首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Martian surface is exposed to both UVC radiation (<280 nm) and higher doses of UVB (280-315 nm) compared to the surface of the Earth. Terrestrial organisms have not evolved to cope with such high levels of UVC and UVB and thus any attempts to introduce organisms to Mars, particularly in closed-loop life support systems that use ambient sunlight, must address this problem. Here we examine the UV radiation environment of Mars with respect to biological systems. Action spectra and UV surface fluxes are used to estimate the UV stress that both DNA and chloroplasts would experience. From this vantage point it is possible to consider appropriate measures to address the problem of the Martian UV environment for future long term human exploration and settlement strategies. Some prospects for improving the UV tolerance of organisms are also discussed. Existing artificial ecosystems such as Biosphere 2 can provide some insights into design strategies pertinent to high UV environments. Some prospects for improving the UV tolerance of organisms are also discussed. The data also have implications for the establishment of closed-loop ecosystems using natural sunlight on the lunar surface and elsewhere in the Solar System.  相似文献   

2.
Ultraviolet radiation is an important natural physical influence on organism function and ecosystem interactions. The UV radiation fluxes in extraterrestrial environments are substantially different from those experienced on Earth. On Mars, the moon and in Earth orbit they are more biologically detrimental than on Earth. Based on previously presented fluxes and biologically weighted irradiances, this paper considers in more detail measures to mitigate UV radiation damage and methods to modify extraterrestrial UV radiation environments in artificial ecosystems that use natural sunlight. The transmission characteristics of a Martian material that will mimic the terrestrial UV radiation environment are presented. Transmissivity characteristics of other Martian and lunar materials are described. Manufacturing processes for the production of plastics and glass on the lunar and Martian surface are presented with special emphasis on photobiological requirements. Novel UV absorbing configurations are suggested.  相似文献   

3.
While solar electromagnetic radiation can be used to propel a solar sail, it is shown that the Poynting–Robertson effect related to the absorbed portion of the radiation leads to a drag force in the transversal direction. The Poynting–Robertson effect is considered for escape trajectories, Heliocentric bound orbits and non-Keplerian bound orbits. For escape trajectories, this drag force diminishes the cruising velocity, which has a cumulative effect on the Heliocentric distance. For Heliocentric and non-Keplerian bound orbits, the Poynting–Robertson effect decreases its orbital speed, thereby causing it to slowly spiral towards the Sun. Since the Poynting–Robertson effect is due to the absorbed portion of the electromagnetic radiation, degradation of a solar sail implies that this effect becomes enhanced during a mission.  相似文献   

4.
Liulin, a dosimetry-radiometry system, was developed to satisfy the requirements for active flux and dose rate measurements for the flight of the second Bulgarian cosmonaut in 1988. The system consists of a compact battery-operated silicon solid state detector unit and a read/write microcomputer and telemetry unit. We describe the pre-flight calibrations with charged particles, using radioactive sources and accelerated 170 MeV/nucleon proton and alpha particles at the Dubna, Russia cyclotron. We discuss comparisons with data obtained on Mir with the French-built tissue equivalent LET spectrometer NAUSICAA. Lastly, we describe post-flight calibrations performed with 1 GeV/nucleon 56Fe ions at the Brookhaven National Laboratory AGS accelerator, where the instrument was mounted in tandem with several thin position-sensitive silicon detectors behind a stopping target. The silicon detectors provided an energy spectrum for the surviving charged nuclear fragments for which the flux and absorbed dose were recorded by Liulin.  相似文献   

5.
The scenarios for the long-term habitation of space platforms and planetary stations involve plants as fundamental part of Bioregenerative Life Support Systems (BLSS) to support the crew needs. Several constraints may limit plant growth in space: among them ionizing radiation is recognized to severely affect plant cell at morphological, physiological and biochemical level. In this work, plants of Phaseolus vulgaris L. were subjected to four different doses of X-rays (0.3, 10, 50 and 100 Gy) in order to assess the effects of ionizing radiation on this species and to analyze possible mechanisms carried out to overcome the radiation injuries. The effects of X-rays on plant growth were assessed by measuring stem elongation, number of internodes and leaf dry weight. The integrity of photosynthetic apparatus was evaluated by photosynthetic pigment composition and ribulose 1,5-bisphosphate carboxylase (Rubisco) activity, whereas changes in total antioxidant pool and glutathione S transferase activity (GST) were utilized as markers of oxidative stress. The distribution of phenolic compounds in leaf tissues as natural shielding against radiation was also determined.Irradiation of plants at 0.3 and 10 Gy did not determine differences in all considered parameters as compared to control. On the contrary, at 50 and 100 Gy a reduction of plant growth and a decrease in photosynthetic pigment content, as well as an increase in phenolic compounds and a decrease in total antioxidant content and GST activity were found. Only a slight reduction of Rubisco activity in leaves irradiated at 50 and 100 Gy was found. The overall results indicate P. vulgaris as a species with a good potential to face ionizing radiation and suggest its suitability for utilization in BLSSs.  相似文献   

6.
Bacterial spores have been considered as microbial life that could survive interplanetary transport by natural impact processes or human spaceflight activity. Deposition of terrestrial microbes or their biosignature molecules onto the surface of Mars could negatively impact life detection experiments and planetary protection measures. Simulated Mars solar radiation, particularly the ultraviolet component, has been shown to reduce spore viability, but its effect on spore germination and resulting production of biosignature molecules has not been explored. We examined the survival and germinability of Bacillus subtilis spores exposed to simulated martian conditions that include solar radiation. Spores of B. subtilis that contain luciferase resulting from expression of an sspB-luxAB gene fusion were deposited on aluminum coupons to simulate deposition on spacecraft surfaces and exposed to simulated Mars atmosphere and solar radiation. The equivalent of 42 min of simulated Mars solar radiation exposure reduced spore viability by nearly 3 logs, while germination-induced bioluminescence, a measure of germination metabolism, was reduced by less than 1 log. The data indicate that spores can retain the potential to initiate germination-associated metabolic processes and produce biological signature molecules after being rendered nonviable by exposure to Mars solar radiation.  相似文献   

7.
Evidence of microbial life on Earth has been found in siliceous rock formations throughout the geological and fossil record. To understand the mechanisms of silicification and thus improve our search patterns for evidence of fossil microbial life in rocks, a series of controlled laboratory experiments were designed to simulate the silicification of microorganisms. The bacterial strains Pseudomonas fluorescens and Desulphovibrio indonensis were exposed to silicifying media. The experiments were designed to determine how exposure time to silicifying solutions and to silicifying solutions of different Si concentration affect the fossilization of microbial biofilms. The silicified biofilms were analyzed using transmission electron microscopy (TEM) in combination with energy-dispersive spectroscopy. Both bacterial species showed evidence of silicification after 24 h in 1,000 ppm silica solution, although D. indonensis was less prone to silicification. The degree of silicification of individual cells of the same sample varied, though such variations decreased with increasing exposure time. High Si concentration resulted in better preservation of cellular detail; the Si concentration was more important than the duration in Si solution. Even though no evidence of amorphous silica precipitation was observed, bacterial cells became permineralized. High-resolution TEM analysis revealed nanometer-sized crystallites characterized by lattice fringe-spacings that match the (10-11) d-spacing of quartz formed within bacterial cell walls after 1 week in 5,000 ppm silica solution. The mechanisms of silicification under controlled laboratory conditions and the implication for silicification in natural environments are discussed, along with the relevance of our findings in the search for early life on Earth and extraterrestrial life.  相似文献   

8.
The Biostack experiments I and II were flown on board the Apollo 16 and 17 command modules in order to obtain information on the biological damage produced by the bombardment of heavy high-energy (HZE) particles of cosmic radiation during spaceflight. Such data are required for estimating radiation hazards in manned spaceflight. Seven biological systems in resting state (Bacillus subtilis spores, Colpoda cucullus cysts, Arabidopsis thaliana seeds, and eggs of Artemia salina, Tribolium castaneum and of Carausius morosus) were accommodated in the two Biostacks. By using a special sandwich construction of visual track detectors and layers of biological objects, identification of each hit biological object was achieved and the possible biological damage correlated with the physical features of the responsible HZE-particle. In the different systems the degree of damage depended on whether the hit cell was replaceable or not. A high sensitivity to HZE-particle bombardment was observed on Artemia salina eggs; 90% of the embryos, which were induced to develop from hit eggs, died at different developmental stages. Malformations of the abdomen or the extremities of the nauplius were frequently induced. In contrast, the growth of hit Vicia faba radiculae and the germination of hit Arabidopsis thaliana seeds and hit Bacillus subtilis spores were not influenced remarkably. But there was an increase in multicaulous plants and a reduction in the outgrowth of the bacterial spores. In addition, information was obtained on the fluence of the HZE-particles, on their spectrum of charge and energy loss, and on the absorption by the Apollo spacecraft and the Biostack material itself. This will help to improve knowledge concerning radiation conditions inside of spacecrafts, necessary to secure a maximum possible protection to the astronauts.  相似文献   

9.
10.
Bone loss induced by microgravity during space flight is one of the most deleterious factors on astronaut’s health and is mainly attributed to an unbalance in the process of bone remodeling. Studies from the space microgravity have demonstrated that the disruption of bone remodeling is associated with the changes of four main functional bone cells, including osteoblast, osteoclast, osteocyte, and mesenchymal stem cells. For the limited availability, expensive costs and confined experiment conditions for conducting space microgravity studies, the mechanism of bone cells response and adaptation to microgravity is still unclear. Therefore, some ground-based simulated microgravity methods have been developed to investigate the bioeffects of microgravity and the mechanisms. Here, based on our studies and others, we review how bone cells (osteoblasts, osteoclasts, osteocytes and mesenchymal stem cells) respond and adapt to simulated microgravity.  相似文献   

11.
Abstract The survival strategies of one cyanobacteria colony and three terricolous lichen species from the hot subdesert of Tabernas, Spain, were studied along with topographical attributes of the area to investigate whether the protective strategies adopted by these pioneer soil colonizers are related to the environmental stressors under which they survive. A handheld Raman spectrometer was used for biomolecular characterization, while the microclimatic and topographic parameters were estimated with a Geographic Information System (GIS). We found that the survival strategies adopted by those organisms are based on different combinations of protective biomolecules, each with diverse ecophysiological functions, such as UV-radiation screening, free-energy quenching, antioxidants, and the production of different types and amounts of calcium oxalates. Our results show that the cyanobacteria community and each lichen species preferentially colonized a particular microhabitat with specific moisture and incident solar radiation levels and exhibited different adaptive mechanisms. In recent years, a number of studies have provided consistent results that suggest a link between the strategies adopted by those extremophile organisms and the microclimatic environmental parameters. To date, however, far too little attention has been paid to results from Raman analyses on dry specimens. Therefore, the results of the present study, produced with the use of our miniaturized instrument, will be of interest to future studies in astrobiology, especially due to the likely use of Raman spectroscopy at the surface of Mars. Key Words: Hot desert-Raman spectroscopy-Topography-Terricolous lichens-Cyanobacteria-Planetary exploration. Astrobiology 12, 743-753.  相似文献   

12.
In 2001–2003, the X-ray and microwave observations of ten solar flares of M- and X-classes were carried out by the CORONAS-F orbital station, the RSTN Sun service, and Nobeyama radio polarimeters. Based on these observations, a correlation analysis of time profiles of nonthermal radiation was performed. On average, hard X-ray radiation outstrips the microwave radiation in 9 events, i.e., time delays are positive. The appearance of negative delays is associated with effective scattering of accelerated electrons in pitch angles, where the length of the free path of a particle is less than the half-length of a flare loop. The additional indications are obtained in favor of the need to account for the effect of magnetic mirrors on the dynamics of energetic particles in the coronal arches.  相似文献   

13.
《Acta Astronautica》1999,44(2-4):193-199
Recent results are presented in the study of radioisotope electric propulsion as a near-term technology for sending small robotic sciencecraft to the outer Solar System and near- interstellar space. Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on radioisotope electric generators and ion thrusters. Powerplant specific masses are expected to be in the range of 100 to 200 kg/kW of thrust power. Planetary rendezvous missions to Pluto, fast missions to the heliopause (100 AU) with the capability to decelerate an orbiter for an extended science program and prestellar missions to the first gravitational lens focus of the Sun (550 AU) are investigated.  相似文献   

14.
The paper presents the study of turbulent properties of the solar wind plasma, namely, the intermittency of fluctuations of the solar wind ion flux in the earlier unexplored region of comparatively high frequencies (0.01–1 Hz). Special attention is given to a comparison of intermittency for solar wind observation intervals containing sharp (shorter than 10 min) and high-amplitude (greater than 20%) changes of the ion flux to intervals without such changes. The solar wind observation intervals containing sharp changes of the flux are found to be essentially more intermittent than the intervals of quiet solar wind. Such a comparison allows one to reveal the fundamental difference in turbulent properties of the solar wind depending on the presence or absence of sharp boundaries in plasma structures.  相似文献   

15.
太阳电池阵在空间会以较大的速度展开到位并锁定,这会给太阳电池阵的对日定向驱动机构(SADA)带来一定的冲击载荷,而仅依靠软件仿真很难得到准确可靠的冲击载荷数据。文章提出在卫星星体与太阳电池阵根部铰链之间串接一个测量工装,通过测量工装产生的应变可间接获得冲击载荷。该技术措施已在型号研制中得到应用,为驱动机构承载能力的设计分析和考核提供了依据。  相似文献   

16.
Two major parameters influencing the survival of Bacillus subtilis spores in space and on bodies within the Solar System are UV radiation and vacuum, both of which induce inactivating damage to DNA. To date, however, spore survival and DNA photochemistry have been explored only at the extremes of Earth-normal atmospheric pressure (101.3 kPa) and at simulated space vacuum (10(-3)-10(-6) Pa). In this study, wild-type spores, mutant spores lacking alpha/beta-type small, acid-soluble spore proteins (SASP), naked DNA, and complexes between SASP SspC and DNA were exposed simultaneously to UV (254 nm) at intermediate pressure (1-2 Pa), and the UV photoproducts cis,syn-thymine-thymine cyclobutane dimer (c,sTT), trans,syn-thymine-thymine cyclobutane dimer (t,sTT), and "spore photoproduct" (SP) were quantified. At 101.3 kPa, UV-treated wild-type spores accumulated only SP, but spores treated with UV radiation at 1-2 Pa exhibited a spectrum of DNA damage similar to that of spores treated at 10(-6) Pa, with accumulation of SP, c,sTT, and t,sTT. The presence or absence of alpha/beta-type SASP in spores was partly responsible for the shift observed between levels of SP and c,sTT, but not t,sTT. The changes observed in spore DNA photochemistry at 1-2 Pa in vivo were not reproduced by irradiation of naked DNA or SspC:DNA complexes in vitro, suggesting that factors other than SASP are involved in spore DNA photochemistry at low pressure.  相似文献   

17.
Hudson RL  Moore MH 《Astrobiology》2006,6(3):483-489
In this paper we present spectra of H2O2-containing ices in the near- and mid-infrared (IR) regions. Spectral changes on warming are shown, as is a comparison of near-IR bands of H2O and H2O2-containing ices. An estimate of the A-value (absolute intensity) for the largest near- IR feature of H2O2 is given. Radiation-decay half-lives are reported for 19 K and 80 K, and are related to the surface radiation doses on Europa. The radiation data show that H2O2 destruction is slower at 80 K than 19 K, and are consistent with the claim that icy material in the outermost micrometer of Europa's surface has been heavily processed by radiation.  相似文献   

18.
为减小某卫星天线支承筒的振动,根据阻尼减振原理,采用约束阻尼层方法进行减振处理。以ZN-1丁基橡胶为粘性阻尼材料,T700S层合板为约束层,在约束层厚0.4 mm,铺层数为4的条件下,设计了三种不同铺层角的减振方案。有限元计算结果表明,在天线支承筒上附加约束阻尼层可明显降低支承筒指定点处的频率响应。在给定条件下,给出的三种方案均满足工程要求,其中以铺层角45°/-45°/0°/90°方案的效果最佳。  相似文献   

19.
文章梳理了面向航天器总体设计的空间辐射效应分析技术现状,重点归纳了航天器空间辐射效应分析中需关注的总剂量效应、位移损伤效应、单粒子效应分析的要素、分析方法及软件工具,并结合近年来国际上空间辐射环境模型的最新进展,就辐射环境动态变化认知、在轨辐射风险表征、陌生轨道区域辐射环境影响分析等方面提出国内空间辐射效应分析技术的不足及后续发展建议。  相似文献   

20.
文章基于"Translation:Ideology——On the Construction of Different Anne Franks"一文中关于《安妮日记》不同版本改写,删减的问题,举例说明了读者反应论在跨文化翻译中的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号