首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On 14 May 2009 the European Space Agency launched 2 space observatories: Herschel (with a 3.5 m mirror it is the largest space telescope ever) will collect long-wavelength infrared radiation and will be the only space observatory to cover the spectral range from far-infrared to sub-millimetre wavelengths, and Planck will look back at the dawn of time, close to the Big Bang, and will examine the Cosmic Microwave Background (CMB) radiation to a sensitivity, angular resolution and frequency range never achieved before. This paper will present the Flight Dynamics, mission analysis challenges and flight results from the first 3 months of these missions.Both satellites were launched on the same Ariane 5 and travelled to the L2 Lagrange point of the sun–earth system 1.5 million km from the earth in the opposite direction of the sun. There they were injected to a quasi-halo orbit (Herschel) with the dimension of typically 750,000 km×450,000 km, and a Lissajous orbit (Planck) of 300,000 km×300,000 km.In order to reach these Lissajous orbits it is mandatory to perform large trajectory correction manoeuvres during the first days of the mission. Herschel had its main manoeuvres on the first day. Planck had to be navigated on the first day and by a mid-course correction manoeuvre, the L2 orbit insertion manoeuvre was planned on day 50. If these slots were missed, fuel penalties would rapidly increase.This posed a heavy load on the operations teams because both spacecrafts have to be thoroughly checked out and put into the correct modes of their attitude control systems during the first hours after launch.The sequence of events will be presented and explained and the orbit determination results as well as the manoeuvre planning will be emphasised.  相似文献   

2.
The solutions adopted for the disposal of the upper stages used to put in orbit the first satellites of the new European (Galileo) and Chinese (Beidou) navigation constellations were analyzed. The orbit evolution of the rocket bodies was modeled for 200 years, taking into account all relevant perturbations, and the chosen disposal options were evaluated in terms of their long-term consequences for the debris environment. The results obtained, when applicable, were also discussed in the context of the eccentricity instability problem, pointed out in previous studies. In addition, the long-term evolution of the fragments resulting from a Beidou rocket body breakup, and of simulated high area-to-mass ratio objects released in the disposal orbits of the first two Galileo upper stages, was investigated.Eight out of ten Beidou upper stages were found to have an orbital lifetime <25 years and the other two resulted in a dwell time of approximately 6 years below 2000 km. It was also found that the perigee heights of the two upper stages used to deploy the first Galileo test spacecraft will remain more than 169 km above the constellation nominal altitude, never crossing the existing or planned navigation systems. In spite of an inclination resonance possibly leading to the exponential growth of the eccentricity over several decades, the optimal choice of the disposal orbital elements was able to prevent such an outcome, by maintaining the orbit nearly circular. Therefore, the upper stage disposal strategies used so far for Beidou and Galileo have generally been quite successful in averting the long-term interference of such rocket bodies with the navigation constellations, provided that accidental breakups are prevented.  相似文献   

3.
《Acta Astronautica》2007,60(10-11):939-945
The NASA/JSC sodium potassium (NaK) RORSAT coolant source and propagation model has been extended to 1 mm in diameter via a size distribution, which is an inverse power law fit that has been modified to damp out in the large size regime. This function matches the observed Haystack NaK population down to diameters of about 6 mm. The extrapolated function takes the population to arbitrarily small sizes all the while retaining the mass dominance of the 1–3 cm droplets that is observed in the Haystack data. This result is physically satisfying since the mechanism of NaK ejection appears to be a nonviolent release at low relative velocities. We propose that any NaK particles smaller than about 1 mm that exist would not be due to that mechanism. Instead, we show that such a population could be the result of subsequent collisions of NaK droplets with larger resident space objects and the micrometeoroid population. Our preliminary analysis shows that collisions between these populations are likely in the time period of 1980 through present-day. Though the result of such collisions is generally unknown it is probable that some ejecta of NaK enter the low Earth orbit (LEO) environment as a result. It is these secondary NaK droplets/particles that we contend are the likely impactors noted on returned surfaces.  相似文献   

4.
The history of the deployment of nuclear reactors in Earth orbits is reviewed with emphases on lessons learned and the operation and safety experiences. The former Soviet Union's “BUK” power systems, with SiGe thermoelectric conversion and fast neutron energy spectrum reactors, powered a total of 31 Radar Ocean Reconnaissance Satellites (RORSATs) from 1970 to 1988 in 260 km orbit. Two of the former Soviet Union's TOPAZ reactors, with in-core thermionic conversion and epithermal neutron energy spectrum, powered two Cosmos missions launched in 1987 in ~800 km orbit. The US’ SNAP-10A system, with SiGe energy conversion and a thermal neutron energy spectrum reactor, was launched in 1965 in 1300 km orbit. The three reactor systems used liquid NaK-78 coolant, stainless steel structure and highly enriched uranium fuel (90–96 wt%) and operated at a reactor exit temperature of 833–973 K. The BUK reactors used U-Mo fuel rods, TOPAZ used UO2 fuel rods and four ZrH moderator disks, and the SNAP-10A used moderated U-ZrH fuel rods. These low power space reactor systems were designed for short missions (~0.5 kWe and ~1 year for SNAP-10A, <3.0 kWe and <6 months for BUK, and ~5.5 kWe and up to 1 year for TOPAZ). The deactivated BUK reactors at the end of mission, which varied in duration from a few hours to ~4.5 months, were boosted into ~800 km storage orbit with a decay life of more than 600 year. The ejection of the last 16 BUK reactor fuel cores caused significant contamination of Earth orbits with NaK droplets that varied in sizes from a few microns to 5 cm. Power systems to enhance or enable future interplanetary exploration, in-situ resources utilization on Mars and the Moon, and civilian missions in 1000–3000 km orbits would generate significantly more power of 10's to 100's kWe for 5–10 years, or even longer. A number of design options to enhance the operation reliability and safety of these high power space reactor power systems are presented and discussed.  相似文献   

5.
《Acta Astronautica》2013,82(2):635-644
The Inner Formation Flying System (IFFS) consisting of an outer satellite and an inner satellite which is a solid sphere proof mass freely flying in the shield cavity can construct a pure gravity orbit to precisely measure the earth gravity field. The gravitational attraction on the inner satellite due to the outer satellite is a significant disturbance source to the pure gravity orbit and is required to be limited to 10−11 m s−2 order. However, the gravitational disturbance force was on 10−9 m s−2 order actually and must be reduced by dedicated compensation mass blocks. The region of relative motion of the inner satellite about its nominal position is within 1 cm in dimension, which raises the complexity of the compensation blocks design. The iterative design strategy of the compensation blocks based on reducing the gravitational attraction at the nominal position of the inner satellite is presented, aiming to guarantee the gravitational force in the relative motion region within requirements after the compensation. The compensation blocks are designed according to the current status of IFFS, and the gravitational disturbance force in the region is reduced to 10−11 ms−2 order with minimized adding mass.  相似文献   

6.
Collisions among existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. Due to their greater number, small (1–10 cm) debris are the main threat, while large (>10 cm) objects are the main source of new debris. Flying up and interacting with each large object is inefficient due to the energy cost of orbit plane changes, and quite expensive per object removed. Strategically, it is imperative to remove both small and large debris. Laser-Orbital-Debris-Removal (LODR), is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LODR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. With 20% clear weather, a laser-optical system at either pole could lower the 8-ton ENVISAT by 40 km in about 8 weeks, reducing the hazard it represents by a factor of four. We also discuss the advantages and disadvantages of a space-based LODR system. We estimate cost per object removed for these systems. International cooperation is essential for designing, building and operating any such system.  相似文献   

7.
In this paper we calculate the effect of atmospheric dust on the orbital elements of a satellite. Dust storms that originate in the Martian surface may evolve into global storms in the atmosphere that can last for months can affect low orbiter and lander missions. We model the dust as a velocity-square depended drag force acting on a satellite and we derive an appropriate disturbing function that accounts for the effect of dust on the orbit, using a Lagrangean formulation. A first-order perturbation solution of Lagrange's planetary equations of motion indicates that for a local dust storm cloud that has a possible density of 8.323×10−10 kg m−3 at an altitude of 100 km affects the orbital semimajor axis of a 1000 kg satellite up −0.142 m day−1. Regional dust storms of the same density may affect the semimajor axis up to of −0.418 m day−1. Other orbital elements are also affected but to a lesser extent.  相似文献   

8.
A spacecraft capable of producing higher-than-natural electrostatic charges may achieve propellantless orbital maneuvering via the Lorentz-force interaction with a planetary magnetic field. Development of maneuver strategies for these propellantless vehicles is complicated by the fact that the perturbative Lorentz force acts along only a single line of action at any instant. Relative-motion dynamical models are developed that lead to approximate analytical solutions for the motion of charged spacecraft subject to the Lorentz force. These solutions indicate that the principal effects of the Lorentz force on a spacecraft in a circular orbit are to change the intrack position and to change the orbit plane. A rendezvous example is presented in which a spacecraft with a specific charge of ?3.81 × 10?4 C/kg reaches a target vehicle initially 10 km away (on the same equatorial low-Earth orbit) in 1 day. Fly-around maneuvers may be achieved in low-Earth orbit with specific charges on the order of 0.001 C/kg.  相似文献   

9.
Ir–Zr co-deposition coatings with 71 at% Zr were deposited on graphite by double glow plasma at 1073–1123 K. The structure and composition of the coatings were confirmed by FE-SEM, XRD, XPS and EDS. The hardness and the elastic modulus of the coatings were estimated by nanoindentation instrument. The adhesion strength between the coating and the substrate was evaluated by a scratch tester. The results showed that the coating was composed of nanocrystalline grains with a size of 80–90 nm compared with 0.5 μm for the pure Ir coating. The fine grains of the coatings might be attributed to the additional Zr element. New phases IrZr and ZrC were formed due to the high content of Zr and high deposition temperature. The hardness and elastic modulus of the coatings were about 7.5 GPa and 388 GPa, respectively. The adhesive force between the coating and the substrate was about 10 N.  相似文献   

10.
This paper presents the orbital maneuver (OM) and keeping of FORMOSAT-2 (or FS2, Formosa Satellite #2) since its launch on 20 May 2004. The successful launch put FS2 in a sun-synchronous parking orbit with 729.94 km perigee and 743.31 apogee. Taiwan’s National Space Organization (NSPO) then spent 11 days to perform the first orbital maneuver (OM#1) and raised FS2 to its sun-synchronous circular mission orbit at 888.47 km altitude. Due to various kinds of disturbances, FS2’s orbit shifts gradually but constantly. Therefore, four times of OM had been performed for orbital keeping. Details of all 5 OMs are described.  相似文献   

11.
The International Rosetta Mission, cornerstone of the European Space Agency Scientific Programme, was launched on 2nd March 2004 to its 10 years journey to comet Churyumov–Gerasimenko. Rosetta will reach the comet in summer 2014, orbit it for about 1.5 years down to distances of a few Kilometres and deliver the Lander Philae onto its surface. After its successful asteroid fly-by in September 2008, Rosetta came back to Earth, for the final gravity acceleration towards its longest heliocentric orbit, up to a distance of 5.3 AU. It is during this phase that Rosetta crossed for the second time the main asteroids belt and performed a close encounter with asteroid (21)Lutetia on the 10th of July 2010 at a distance of ca. 3160 km and a relative velocity of 15 km/s. The payload complement of the spacecraft was activated to perform highly valuable scientific observations. The approach phase to the celestial body required a careful and accurate optical navigation campaign that will prove to be useful also for the comet approach phase. The experience gained with first asteroid flyby in 2008 was fed back into the operations definition and preparation for this highly critical phase; this concerns in particular the operations of the navigation camera for the close-loop autonomous asteroid tracking and of the main scientific camera for high resolution imaging. It was shortly after the flyby that Rosetta became the solar-powered spacecraft to have flown furthest from the Sun (>2.72 AU). This paper presents the activities carried out and planned for the definition, preparation and implementation of the asteroid flyby mission operations, including the test campaign conducted to improve the performance of the spacecraft and payload compared to the previous flyby. The results of the flyby itself are presented, with the operations implemented, the achieved performance and the lessons learned.  相似文献   

12.
Introduction: This joint US–Russian work aims to establish a methodology for assessing cardiac function in microgravity in association with manipulation of central circulating volume. Russian Braslet-M (Braslet) occlusion cuffs were used to temporarily increase the volume of blood in the lower extremities, effectively reducing the volume in central circulation. The methodology was tested at the International Space Station (ISS) to assess the volume status of crewmembers by evaluating the responses to application and release of the cuffs, as well as to modified Valsalva and Mueller maneuvers. This case study examines the use of tissue Doppler (TD) of the right ventricular (RV) free wall. Results: Baseline TD of the RV free wall without Braslet showed early diastolic E′ (16 cm/s), late diastolic A′ (14 cm/s), and systolic S′ (12 cm/s) velocities comparable with those in normal subjects on Earth. Braslet application caused 50% decrease of E′ (8 cm/s), 45% increase of A′, and no change to S′. Approximately 8 beats after the Braslet release, TD showed E′ of 8 cm/s, A′ of 12 cm/s, and S′ of 13 cm/s. At this point after release, E′ did not recover to baseline values while l A′ and S′ did recover. The pre-systolic cross-sectional area of the internal jugular vein without Braslet was 1.07 cm2, and 1.13 cm2 10 min after the Braslet was applied. The respective cross-sectional areas of the femoral vein were 0.50 and 0.54 cm2. The RV myocardial performance Tei index was calculated by dividing the sum of the isovolumic contraction time and isovolumic relaxation time by the ejection time ((IVCT+IVRT)/ET); baseline and Braslet-on values for Tei index were 0.25 and 0.22, respectively. Braslet Tei indices are within normal ranges found in healthy terrestrial subjects and temporarily become greater than 0.4 during the dynamic Braslet release portion of the study. Conclusions: TD modality was successfully implemented in space flight for the first time. TD of RV revealed that the Braslet influenced cardiac preload and that fluid was sequestered in the lower extremity interstitial and vascular space after only 10 min of application. This report demonstrates that Braslet application has an effect on RV physiology in long-duration space flight based on TD, and that this effect is in part due to venous hemodynamics.  相似文献   

13.
The mission complexity of Nanosatellites has increased tremendously in recent years, but their mission range is limited due to the lack of an active orbit control or ∆v capability. Pulsed Plasma Thrusters (PPT), featuring structural simplicity and very low power consumption are a prime candidate for such applications. However, the required miniaturization of standard PPTs and the adaption to the low power consumption is not straightforward. Most investigated systems have failed to show the required lifetime. The present coaxial design has shown a lifetime of up to 1 million discharges at discharge energies of 1.8 J in previous studies. The present paper focuses on performance characterizations of this design. For this purpose direct thrust measurements with a µN thrust balance were conducted. Thrust measurements in conjunction with mass bit determination allowed a comprehensive assessment. Based on those measurements the present µPPT has a total impulses capability of approximately I≈1.7 Ns, an average mass bit of 0.37 µg s−1 and an average specific impulse of Isp≈904 s. All tests have shown very good EM compatibility of the PPT with the electronics of the flight-like printed circuit board. Consequently, a complete µPPT unit can provide a ∆v change of 5.1 m/s or 2.6 m/s to a standard 1-unit or 2-unit CubeSat respectively.  相似文献   

14.
《Acta Astronautica》2010,66(11-12):1571-1581
A dual one-way ranging (DOWR) system provides very high accuracy range measurements between two satellites. The GRACE satellite mission implements the DOWR, called KBR (K-band ranging), to measure very small inter-satellite range change in order to map the Earth gravity field. The flight performance of the KBR is analyzed by using a hybrid software simulator that incorporates actual satellite orbit data into a comprehensive KBR simulator, which was earlier used for computing the GRACE baseline accuracy. Three types of experiments were performed. First is the comparison of the flight data with the simulated data in spectral domain. Second is the comparison of double differenced noise level. Third is the comparison of the range-rate difference with GPS clock estimates. The analysis shows a good agreement with the simulation model except some excessive high frequency noise, e.g. 10−4 m/√Hz at 0.1 Hz. The range-rate difference shows 0.003 cyc/s discrepancy with the clock estimates. These analyses are helpful to refine the DOWR simulation model and can be benefit to future DOWR instrument development.  相似文献   

15.
An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.  相似文献   

16.
《Acta Astronautica》2010,66(11-12):1765-1771
The ESA SWARM mission will consist of three satellites that will measure the Earth magnetic field. The system calls for metre accuracy knowledge of the measurement locations. To achieve this a GPS receiver is used. At least four GPS signals are tracked to determine the code and carrier ranges, from which the position can be derived. The accuracy improves when using more GPS satellites and by averaging over many measurements. The latter is achieved in ground processing with a model-based orbit prediction, resulting in cm accuracy. The main error contributions in the processing are often measurement errors due to satellite multi-path effects. The multipath effects are characterized by measuring the antenna on a 1.5 m mock-up, representing the 9 m long satellite. In order to verify that the mock-up is representative, extensive electromagnetic simulations were made. The simulations included the antenna and the complete satellite and were then reduced to the antenna and a section of the satellite. The actual design of the antenna was performed with several levels of software. First, a fast bodies-of-revolution simulation found a geometry with the right coverage. Then, a finite element method simulation allowed us to match the antenna at two frequencies simultaneously.  相似文献   

17.
Beyond the Earth's atmosphere, galactic cosmic radiation (GCR) and solar energetic particles (SEPs) are a significant hazard to both manned and robotic missions. For long human missions on the lunar surface (months to a year) a radiation shelter is needed for dose mitigation and emergency protection in case of solar events. This paper investigates the interaction of source protons of solar events like those of February 1956 that emitted many fewer particles with energies up to 1000 MeV and of the October 1989 event of lower protons energy but higher fluence, with the lunar regolith and aluminum shielding of a lunar shelter. The shelter is 5 m in diameter and has a footprint of 5×8 m and a 10 cm thick aluminum support structure, however, actual thickness could be much smaller (~1–2 cm) depending on the weight of the regolith shielding piled on top. The regolith is shown to be slightly more effective than aluminum. Thus, the current results are still applicable for a thinner aluminum structure and increased equivalent (or same mass) thickness of the regolith. The shielding thicknesses to reduce the dose solely due to solar protons in the lunar shelter below those recommended by NASA to astronauts for 30 day-operation in space (250 mSv) and for radiation workers (50 mSv) are determined and compared. The relative attenuation of incident solar protons with regolith shielding and the dose estimates inside the shelter are calculated for center seeking, planar, and isotropic incidence of the source protons. With the center seeking incidence, the dose estimates are the highest, followed by those with isotropic incidence, and the lowest are those with the planar incidence.  相似文献   

18.
The present paper describes thrust measurement results for an arcjet thruster using Dimethyl ether (DME) as the propellant. DME is an ether compound and can be stored as a liquid due to its relatively low freezing point and preferable vapor pressure. The thruster successfully produced high-voltage mode at DME mass flow rates above 30 mg/s, whereas it yielded low-voltage mode below 30 mg/s. Thrust measurements yielded a thrust of 0.15 N and a specific impulse of 270 s at a mass flow rate of 60 mg/s with a discharge power of 1300 W. The DME arcjet thruster was comparable to a conventional one for thrust and discharge power.  相似文献   

19.
Small satellites, weighting between 100 and 200 kg, have witnessed increasing use for a variety of space applications including remote sensing constellations and technology demonstrations. The energy storage/stored power demands of most spacecraft, including small satellites, are currently accommodated by rechargeable batteries—typically nickel–cadmium cells (specific energy of 50 Wh kg−1), or more recently lithium-ion cells (150 Wh kg−1). High energy density is a primary concern for spacecraft energy storage design, and these batteries have been sufficient for most applications. However, constraints on the allowable on-board battery size have limited peak power performance such that the maximum power supply capability of small satellites currently ranges between only 70 and 200 W. This relatively low maximum power limits the capabilities of small satellites in terms of payload design and selection. In order to enhance these satellites' power performance, the research reported in this paper focused on the implementation of super-capacitors as practical rechargeable energy storage medium, and as an alternative to chemical batteries. Compared to batteries, some super-capacitors are able to supply high power at high energy-efficiency, but unfortunately they still have a very low energy density (5–30 Wh kg−1). However, the provision of this high power capability would considerably widen the range of small satellite applications.  相似文献   

20.
X-ray astronomy is in a privileged situation with the successful missions Chandra and XMM-Newton for more than 10 years in orbit, and Astro-H in the building phase. Over the past 10 years ESA, NASA, and YAXA studies have been made of follow-up missions, like Constellation-X, XEUS, IXO, and ATHENA. This presentation will highlight the technological challenges encountered to build X-ray optics and instrumentation for these types of missions. The optics requires an order of magnitude more collecting area (>5 m2) for a few seconds of arc spatial resolution. This drives the focal length of the telescope (∼25 m), and thereby the complexity of the spacecraft. Furthermore new technologies are required to realize such an optic within a reasonable mass. The detectors require significant improvement in field of view (number of pixels), energy resolution, and count rate ability. This tends to be possible by the use of Si-based imaging arrays with a large number of pixels, high detection efficiency, and high count rate ability at one side, and the development of modest imaging arrays of cryogenic sensors with very high energy resolution and good detection efficiency at the other side. The cryogenic detectors require further development of cooling systems based on mechanical coolers, like employed for the 1st time on Planck, and planned for Astro-H. The biggest challenge for the realization of such a mission is however not technical. That challenge is that the realization of this future X-ray astronomy mission will require coordination between scientists and Space Agencies on a Global scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号