首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An analysis of observations and investigations carried out in space flight has shown that some cosmonauts and astronauts have experienced vestibular disorders during the transition to weightlessness. Vestibular-sensory disorders include: Spatial illusions (the feelings of falling down, being in an upside-down position, the sensations of rotation of the craft or the body) and vertigo occurring during the onset of the orbital flight and head movements; Feelings, similar to those experienced in response to Coriolis accelerations on the Earth, which occasionally develop in weightlessness during the spacecraft rotation upon abrupt head and body movements and restrained feet; Feelings "of the load on the vestibular analyser which is unlike any Earth-bound effects" upon abrupt head movements during the first hours of an orbital flight and "a prolonged movement" during the switch-off of thrusters in weightlessness. Vestibular-vegetative disorders comprise a complex of symptoms similar to those of motion sickness: loss of appetite, stomach awareness (12%), hypersalination, nausea (9.6%) and vomiting (4.8%). Soviet studies suggest that the vestibular tolerance to the flight effects depends on the natural stability and training to the cumulative effect of adequate vestibular stimuli. This has been used in the development of the system of vestibular selection. Changes in the vestibular function seem to play the major role in the development of motion sickness in weightlessness, extra-labyrinthine factors being contributory. The current hypotheses have not yet been adequately confirmed in experiments. A detailed physiological analysis allows the conclusion that the decisive factor in the development of motion sickness may be the disturbance of the function of analysers responsible for spatial orientation which take the form of sensory conflicts as well as an altered reactivity of the organism due to the hemodynamic rearrangement.  相似文献   

2.
Estimates of the cost of human space flight continue to generate controversy in the effort to set US space policy. Estimates vary widely, depending upon the position of the observer. This article identifies the real cost of major space flight programs and traces the heterofore unsuccessful efforts to cut the expense of space operations.  相似文献   

3.
Dunn CD  Lange RD 《Acta Astronautica》1979,6(5-6):725-732
Various factors which are important in the regulation of erythropoiesis have been studied in dehydrated mice in the belief that some information would be gained relevant to the erythropoietic effects of space flight. Dehydration reduced the plasma volume and, because changes in red cell volume were minimal, the hematocrit was elevated. Thus a state of relative erythrocytosis was produced. Our understanding of the mechanism whereby these changes decreased red cell production is uncertain and appears to differ somewhat from the erythroid suppression seen following elevation of the hematocrit in animals with an absolute erythrocytosis. It is suggested that factors outside of the normal erythropoietic control pathway (such as energy balance) may play an important role in the decrease in red cell volume seen in man following space flight.  相似文献   

4.
Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1 alpha, 25-dihydroxyvitamin D3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.  相似文献   

5.
The bioassay of body fluids experiment is designed to evaluate the biochemical adaptation resulting from extended exposure to space flight environment by identifying changes in hormonal and associated fluid and electrolyte parameters reflected in the blood and urine of the participating crewmen. The combined stresses of space flight include weightlessness, acceleration, confinement, restraint, long-term maintenance of high levels of performance, and possible desynchronosis. Endocrine measurements to assess the physiological cost of these stresses have been considered from two aspects. Fluid and electrolyte balance have been correlated with weight loss, changes in the excretion of aldosterone and vasopressin and fluid compartments. The second area involves the estimation of the physiological cost of maintaining a given level of performance during space flight by analysis of urinary catecholamines and cortisol. Inter-individual variability was demonstrated in most experimental indices measured; however, constant patterns have emerged which include: body weight change; increases in plasma renin activity; elevations in urinary catecholamines, ADH, aldosterone and cortisol concentrations. Plasma cortisol decreases in immediate postflight samples with subsequent increase in 24-hour urines. The measured changes are consistent with the prediction that a relative increase in thoracic blood volume upon transition to the zero-gravity environment is interpreted as a true volume expansion resulting in an osmotic diuresis. This diuresis in association with other factors ultimately results in a reduction in intravascular volume, leading to an increase in renin and a secondary aldosteronism. Once these compensatory mechanisms are effective in reestablishing positive water balance, the crewmen are considered to be essentially adapted to the null-gravity environment. Although the physiological cost of this adaptation must reflect the electrolyte deficit and perhaps other factors, it is assumed that the compensated state is adequate for the demands of the environment; however, this new homeostatic set is not believed to be without physiological cost and could, except with proper precautions, reduce the functional reserve of exposed individuals.  相似文献   

6.
To assess the effects of prolonged space flight on the electrophysiological properties of the heart, vectorcardiograms (VCG) were obtained on the Skylab crews at regular intervals during flight and the pre- and postflight periods. The VCG signals were telemetered from Skylab and analyzed by digital computer. Conventional 12-lead electrocardiograms were derived from the VCG signals by a lead transformation program. Standardized exercise loads were incorporated into the experiment protocol to increase the sensitivity of the VCG for effects of deconditioning and to detect susceptibility for arrhythmias. In Skylab II, 24 preflight, 21 inflight, and 19 postflight experiments were analyzed. Statistically significant inflight changes observed in two or more crew members included: decreased resting heart rate, increased QRS duration, anterior shift QRS vector, increased QRS vector magnitude, anterior shift T vector, and increased T vector magnitude. One astronaut had occasional premature ventricular contractions (PVC) during the pre- and postflight phases. He had a single episode of multiple PVC's during heavy-load exercise testing in flight. A second astronaut had no arrhythmia during pre- or inflight testing. On postflight day 21 he had multiple PVC's and salvos of ectopic ventricular beats. He has had no recurrence of the arrhythmia. With the exception of the cardiac arrhythmias, no deleterious electrophysiological changes were observed during Skylab II.  相似文献   

7.
Commercial suborbital space flights will reach altitudes above 100 km, with 3–5 min of weightlessness bracketed by high-g launch and landing phases. The proposed frequency of these flights, and the large passenger population, present interesting opportunities for researchers in the life sciences. The characteristics of suborbital flight are between those of parabolic and orbital flights, opening up new scientific possibilities and easing the burden for obtaining access to 0g.  相似文献   

8.
Richard Rovetto has done a good job of assembling various arguments that are commonly advanced for a program of manned space flight. I will take them up one by one, and explain why I find them all unconvincing.  相似文献   

9.
Purpose of the work is to analyze and to summarize the data of investigations into human hemodynamics performed over 20 years aboard orbital stations Salyut-7 and Mir with participation of 26 cosmonauts on space flights (SF) from 8 to 438 days in duration. The ultrasonic techniques and occlusive plethysmography demonstrated dynamics of changes in the cardiovascular system during SF of various durations. The parameters of general hemodynamics, the pumping function of the heart and arterial circulation in the brain remained stable in all the space flights; however, there were alterations in peripheral circulation associated with blood redistribution and hypovolemie in microgravity. The anti-gravity distribution of the vascular tone decayed gradually as unneeded. The most considerable changes were observed in leg vessels, equally in arteries (decrease in resistance) and veins (increase in maximum capacity). The lower body negative pressure test (LBNP) revealed deterioration of the gravity-dependent reactions that changed for the worse as SF duration extended. The cardiovascular deconditioning showed itself as loss of descent acceleration tolerance and orthostatic instability in the postflight period.  相似文献   

10.
Changes in body fluids, electrolytes, and muscle mass are manifestations of adaptation to space flight and readaptation to the 1-g environment. The purposes of this paper are to review the current knowledge of biomedical responses to short- and long-duration space missions and to assess the efficacy of countermeasures to 1-g conditioning. Exercise protocols, fluid hydration, dietary and potential pharmacologic measures are evaluated, and directions for future research activities are recommended.  相似文献   

11.
The purpose of the study was to explore the effects of long-duration space flight on the acquisition of specific visual targets in the horizontal plane. Seven cosmonauts (4 high performance pilots and 3 non-pilots) who had flown between 186–198 days on Mir served as subjects. Baseline testing was performed 4 times prior to launch and 4 times following landing at different intervals totrack recovery. During testing the subjects were required to acquire targets that were randomly presented with both a head and eye movement using a time optimal strategy. Prior to flight two unique head movement strategies, related primarily to piloting experience, were used for target acquisition. Non-pilots employed a Type-I strategy consisting of high velocity head movements with large peak amplitudes, while high performance pilots used primarily low velocity, small amplitude head movements (Type-II) to acquire the targets (p<0.02). For both strategies peak head velocities increased as the angular distance to the target increased (p<0.01) resulting in greater discrimination between strategies for the 60° targets. While preflight eye velocity between strategies did not reach statistical significance, postflight testing revealed a decrease in eye velocity for Type-I compared with their preflight performance (p<0.02) for the 60° targets. Postflight, the Type-I group showed a decrease in head velocity (p<0.20) while the Type-II group compensated by increasing head velocity (p<0.02). Variability for both of the head and eye parameters tended to increase postflight for both types of strategies.  相似文献   

12.
This paper briefly reviews the subject of bone remodelling and calcium homeostasis and considers the changes that occur in the microgravity environment of space. The effectiveness of exercise as a countermeasure to bone demineralisation is discussed.  相似文献   

13.
The activity of the enzymes involved in aminoacid metabolism (tyrosine aminotransferase, TAT, tryptophan pyrrolase TP, serine dehydratase, SD) with rapid response to glucocorticoids and enzymes requiring for activity increase repeated administration of corticosterone (alanine aminotransferase, ALT, aspartate aminotransferase, AST) in liver, the changes of lipolysis in adipose tissue and the plasma corticosterone levels were studied in rats subjected to space flight (F), in animals from synchron model experiments (SM, simulated conditions of space flight in laboratory) and in intact controls (C). The increase of plasma corticosterone concentration and of the activity of rapidly (TAT, TP, SD) and slowly activating enzymes (ALT, AST) was found in F group 6-10 hr after space flight (18.5 days on biosatellite COSMOS 1129). This suggested the presence of acute-stress (associated primarily with the landing) and chronic stress induced hypercorticosteronemia during the flight. After the short 6-day period of recovery the plasma corticosterone concentrations and the activities of liver enzymes returned to control levels. The exposition of animals to repeated immobilization stress showed higher response of corticosterone levels in flight rats as compared to intact controls. No changes in basal lipolysis were observed in flight rats in comparison to intact controls, however the stimulation of lipolysis by norepinephrine was lower in animals from F and SM groups. This lower response of lipolytic processes to norepinephrine was found in flight animals also after six days period of recovery. These results showed that there are important changes in the regulation of lipolytic processes in adipose tissue of rats after space flight and in the conditions of model experiments.  相似文献   

14.
Long duration space flight has shown us that humans have significant bone loss and mineral changes because they are living in microgravity. Skylab and the longer Salyut and Mir missions, are providing us useful data and allowing us to explore the mechanism involved in skeletal turnover. Bone redistribution occurs throughout space flight with bone loss predominately in the weight bearing bones of posture and locomotion. The primary health hazards which may occur during space flight induced by skeletal changes include signs and symptoms of hypercalcemia, and the risk of kidney stones and metastatic calcification. After flight lengthy recovery of bone mass and the possible increase in the risk of bone fracture should be considered. Continued research studies are being directed toward determining the mechanisms by which bone is lost in space and developing more effective countermeasures by both the US (Schneider and McDonald, 1984 and Schneider, LeBlanc & Huntoon, 1993) and Russian (Grigoriev et. al., 1989) space programs.  相似文献   

15.
A Cogoli 《Acta Astronautica》1981,8(9-10):995-1002
This paper gives a summary of the principal hematological and immunological changes observed in crews after space flight. Reduction of red blood cell mass (2-21%) and of hemoglobin mass (12-33%) is generally observed after the US and Soviet space missions. The changes are accompanied with a loss of plasma volume (4-16%). Erythrocyte and hemoglobin concentrations in the blood remain constant, suggesting that the changes are driven by a feed-back mechanism. Immunological changes consist mainly of reduced T-lymphocyte reactivity. The results of the 96-day and 140-day Salyut-6 missions suggest that the adaptation of the immune system to spaceflight occurs in two stages: the first takes place during the first 2-3 months in space, the second follows and consists of further weakening of the immune response. Our experiments with human lymphocytes in vitro indicate that high-g enhance, whereas low-g depress lymphocyte activity. Finally, our investigations to be performed on Spacelab are described.  相似文献   

16.
We measured the urine amino acid distribution patterns before, during and after space flight on the Space Shuttle. The urine samples were collected on two separate flights of the space shuttle. The first flight lasted 9.5 days and the second flight 15 days. Urine was collected continuously on 8 subjects for the period beginning 10 d before launch to 6 d after landing. Results: In contrast to the earlier Skylab missions where a pronounced amino aciduria was found, on shuttle the urinary amino acids showed little change with spaceflight except for a marked decrease in all of the amino acids on FD (flight day) 1 (p<0.05) and a reduction in isoleucine and valine on FD3 and FD4 (p<0.05). Conclusions: (i) Amino aciduria is not an inevitable consequence of space flight. (ii) The occurrence of amino aciduria, like muscle protein breakdown is a mission specific effect rather than part of the general human response to microgravity.  相似文献   

17.
The effect of a 20-day space flight on water, Na+, K+, Mg2+, Ca2+ and glycogen contents as well as on activities of glycogen metabolism enzymes--glycogen synthetase and glycogen phosphorylase--of rat skeletal muscles was studied. This data is regarded as an integral test characterizing the state of contractile tissue of the animals at the final stage of flight aboard biosatellites. The measurements indicate that there were no significant changes of cations and glycogen contents nor of the enzymic activities in fast-twitch muscles during the 20-day spaceflight. At the same time dehydration in these muscles was observed, which disappeared on the 25th postflight day. In slow-twitch antigravitational skeletal muscle (m. soleus) there was a decrease of K+ and increase of Na+ in the tissue contents. The changes disappeared at the end of the on-earth readaptation period. From the pattern of these observations, we can conclude that the 20-day space flight leads to some reversible biochemical changes of the rat skeletal muscles. A conclusion can be drawn about necessity of creating, aboard the spaceship, an artificial load on antigravitational skeletal muscles.  相似文献   

18.
载人航天测控通信系统   总被引:4,自引:0,他引:4  
于志坚 《宇航学报》2004,25(3):247-250
在原有卫星测控网的基础上规划设计的载人航天测控通信系统与国际标准接轨,通过国内外的地面测控站和遍布三大洋的四艘远洋测量船保证了地面与飞船的测量控制和通信,实现了多项关键技术突破。它不仅能满足载人航天任务的高可靠、高精度、高覆盖、高速率的需要,还能同时为30颗以上卫星提供测控通信支持,这标志着我国自主发展的航天测控通信技术达到了世界先进水平。  相似文献   

19.
Space radiation is the primary source of hazard for orbital and interplanetary space flight. Radiation levels for different space mission durations, have been established in order to determine the level of hazard. The risk of exceeding the established levels should not be more than 1%. Radiation environment models have been developed to estimate these values. It is possible to build spacecraft shielding based on the calculation of doses and the risk of exceeding these. By reviewing various calculated estimates of the risk, the radiation hazard and the efficiency of protective measures can be established for specific flights.  相似文献   

20.
Crewmembers play an important role in ensuring the efficiency of "crew-spacecraft" system. However, despite of the fact that crewmembers are well trained and highly motivated persons, extreme flight factors may influence negatively on their reliability, and lead to human error occurrence. Therefore, working out methods of human error prevention is very significant to increase crewmember's performance reliability. Human error can occur in the operation of systems for a number of reasons. Within the framework of the present investigation, with use the data collected during "Mir" station missions, the significant (p<0.05) positive correlation of crewmembers errors (CE) frequency with their psychophysiological state (PPS), and work and rest schedule (WRS) intensity has been revealed. Differently, the higher WRS intensity, the crewmember's PPS is worse, and CE frequency is higher. This finding has been based on substantiations of the approach to human reliability management. Its essence will consist of the following: reducing WRS intensity, we thus can improve a crewmember's PPS and, accordingly, reduce CE frequency. This approach is discussed in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号