首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The National Space Biomedical Research Institute (NSBRI) is supporting the National Aeronautics and Space Administration's (NASA) education mission through a comprehensive Education and Public Outreach Program (EPOP) that communicates the excitement and significance of space biology to schools, families, and lay audiences. The EPOP is comprised of eight academic institutions: Baylor College of Medicine, Massachusetts Institute of Technology, Morehouse School of Medicine, Mount Sinai School of Medicine, Texas A&M University, University of Texas Medical Branch Galveston, Rice University, and the University of Washington. This paper describes the programs and products created by the EPOP to promote space life science education in schools and among the general public. To date, these activities have reached thousands of teachers and students around the US and have been rated very highly.  相似文献   

2.
The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families.  相似文献   

3.
Space Exploration educators worldwide are confronting challenges and embracing opportunities to prepare students for the global 21st century workforce. The National Space Biomedical Research Institute (NSBRI), established in 1997 through a NASA competition, is a 12-university consortium dedicated to space life science research and education. NSBRI's Education and Public Outreach Program (EPOP) is advancing the Institute's mission by responding to global educational challenges through activities that: provide teacher professional development; develop curricula that teach students to communicate with their peers across the globe; provide women and minority US populations with greater access to, and awareness of science careers; and promote international science education partnerships.A recent National Research Council (NRC) Space Studies Board Report, America's Future in Space: Aligning the Civil Program with National Needs, acknowledges that “a capable workforce for the 21st century is a key strategic objective for the US space program… (and that) US problems requiring best efforts to understand and resolve…are global in nature and must be addressed through mutual worldwide action”. [1] This sentiment has gained new momentum through a recent National Aeronautics and Space Administration (NASA) report, which recommends that the life of the International Space Station be extended beyond the planned 2016 termination. [2] The two principles of globalization and ISS utility have elevated NSBRI EPOP efforts to design and disseminate science, technology, engineering and mathematics (STEM) educational materials that prepare students for full participation in a globalized, high technology society; promote and provide teacher professional development; create research opportunities for women and underserved populations; and build international educational partnerships.This paper describes select EPOP projects and makes the case for using innovative, emerging information technologies to transfer space exploration knowledge to students, engage educators from across the globe in discourse about science curricula, and foster multimedia collaborations that inform citizens about the benefits of space exploration for life on Earth. Special references are made to educational activities conducted at professional meetings in Austria, Canada, France, China, Greece, Italy, Russia, Scotland and Spain.  相似文献   

4.
Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the “inspirational and educational value of space exploration” [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics’ (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2].Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives.This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed as a model for developing sustainable partnerships and indigenous programs that support Africa's steady emergence as a global space-faring force. The IAC will provide timely: 2011 South Africa will provide timely feedback to refine that report's strategies for space life sciences education and public engagement in Africa and around the globe.  相似文献   

5.
This brief report introduces the Careers Scotland Space School, founded in 2002 as part of a strategy to get school-age students interested in studies and careers in science and technology. Students have been visiting NASA's Johnson Space Center in Texas for a range of activities and instruction. Since 2004 greater numbers have also benefited from a Strathclyde University-based summer school led by staff from NASA and ESA. The school is part of a broader objective to increase entrepreneurism and the commercialisation of research in Scotland.  相似文献   

6.
Hans J. Haubold   《Space Policy》2003,19(1):67-69
Since 1988 the United Nations, through its Programme on Space Applications, has been supporting the establishment and operation of regional Centres for Space Science and Technology Education in Africa, Asia and the Pacific, Latin America and the Caribbean, and Western Asia. Simultaneously, education curricula have been developed for remote sensing and geographic information systems, satellite communications, satellite meteorology and global climate, and space and atmospheric science. The report briefly reviews these developments and highlights the most recent updated education curricula in the four disciplines that have been made available in 2002, in the six official languages of the United Nations, for implementation at the regional centres and beyond.  相似文献   

7.
8.
In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners.In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions.The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn critical reading of scientific literature, first steps in peer review, scientific writing during preparation of their own publication, and writing of the thesis. The training of soft skills is offered as block course in cooperation with other Helmholtz Research Schools. The whole program encompasses 303 h and is organized in semester terms. The first doctoral candidates started the program in spring 2009.  相似文献   

9.
McPhee JC  White RJ 《Acta Astronautica》2003,53(4-10):239-248
The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach.  相似文献   

10.
A continuing challenge for scientists is to keep K-12 teachers informed about new scientific developments. Over the past few years, this challenge has increased as new research findings have come from the field of astrobiology. In addition to trying to keep abreast of these new discoveries, K-12 teachers must also face the demands of the content and pedagogical goals imposed by state and national science education standards. Furthermore, many teachers lack the scientific content knowledge or training in current teaching methods to create their own activities or to implement appropriately new teaching materials designed to meet the standards. There is a clear need for special courses designed to increase the scientific knowledge of K-12 science teachers. In response to this need, the authors developed a suite of innovative, classroom-ready lessons for grades 5-12 that emphasize an active engagement instructional strategy and focus on the recent discoveries in the field of astrobiology. They further created a graduate-level, Internet-based distance-learning course for teachers to help them become familiar with these astrobiology concepts and to gain firsthand experience with the National Science Education Standards-based instructional strategies.  相似文献   

11.
This report describes recent progress in the UN Basic Space Science Initiative (UNBSSI), which aims to facilitate space science education and research, and attendant resources in developing countries. In addition to holding workshops across the developing world, the UN Committee on the Peaceful Uses of Outer Space (COPUOS) successfully implemented the International Heliophysical Year (IHY) as a catalyst for improving understanding of the Sun and of solar-terrestrial physics. Building on this it is now preparing for the International Space Weather Initiative (ISWI). Achievements of the former are discussed, as are the goals and anticipated activities of the latter.  相似文献   

12.
13.
Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 6 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the long-term effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.  相似文献   

14.
学校体育是学校教育人、培养人的一个重要组成部分,学生在接受体育教育、培养的过程中,很大程度上会受到学校体育传统和风气的影响。学校体育传统和风气是指学校在体育方面养成并流行的带有普遍性、重复出现和相对稳定的集体风尚。基本特征是自觉、经常和群体性,具有教育、导向、规范约束功能。构建学校体育传统和风气要课内外结合、普及与提高相结合,采用多种形式与方法达成。  相似文献   

15.
The current emphasis on smaller, faster, cheaper (SFC) spacecraft in NASA’s solar system exploration program is the product of a number of interacting – even interdependent – factors. The SFC concept as applied to NASA’s solar system exploration program can be viewed as the vector sum of (1) the space science community’s desire for more frequent planetary missions to plug the data gaps, educate the next generation of scientists, provide missions to targets of opportunity, and enable programmatic flexibility in times of budgetary crisis; (2) the poor publicity garnered by NASA in the early 1990s and the resultant atmosphere of public criticism (creating an opportunity for reform); (3) The Strategic Defense Initiative Organization’s and the National Space Council community’s desire to advance the Space Exploration Initiative and their perception that the NASA culture at the time represented a barrier to the effective pursuit of space exploration; (4) the effective leadership of NASA Administrator Daniel Goldin; and (5) the diminishing budget profile for space sciences in the early 1990s. This paper provides a summary of the origin of the smaller, faster, cheaper approach in the planetary program. A more through understanding of the history behind this policy will enable analysts to assess more accurately the relative successes and failures of NASA’s new approach to solar system exploration.  相似文献   

16.
The NASA Extreme Environment Mission Operations (NEEMO) 15 mission was focused on evaluating techniques for exploring near-Earth asteroids (NEAs). It began with a University of Delaware autonomous underwater vehicle (AUV) systematically mapping the coral reef for hundreds of meters surrounding the Aquarius habitat. This activity is akin to the type of “far-field survey” approach that may be used by a robotic precursor in advance of a human mission to a NEA. Data from the far-field survey were then examined by the NEEMO science team and follow-up exploration traverses were planned, which used Deepworker single-person submersibles. Science traverses at NEEMO 15 were planned according to a prioritized list of objectives developed by the science team. These objectives were based on review and discussion of previous related marine science research, including previous marine science saturation missions conducted at the Aquarius habitat. AUV data were used to select several areas of scientific interest. The Deepworker science traverses were then executed at these areas of interest during 4 days of the NEEMO 15 mission and provided higher resolution data such as coral species distribution and mortality. These traverses are analogous to the “near-field survey” approach that is expected to be performed by a Multi-Mission Space Exploration Vehicle (MMSEV) during a human mission to a NEA before extravehicular activities (EVAs) are conducted. In addition to the science objectives that were pursued, the NEEMO 15 traverses provided an opportunity to test newly developed software and techniques. Sample collection and instrument deployment on the NEA surface by EVA crew would follow the “near-field survey” in a human NEA mission. Sample collection was not necessary for the purposes of the NEEMO science objectives; however, the engineering and operations objectives during NEEMO 15 were to evaluate different combinations of vehicles, crew members, tools, and equipment that could be used to perform these science objectives on a NEA. Specifically, the productivity and acceptability of simulated NEA exploration activities were systematically quantified and compared when operating with different combinations of crew sizes and exploration systems including MMSEVs, EVA jet packs, and EVA translation devices. Data from NEEMO 15 will be used in conjunction with data from software simulations, parametric analysis, other analog field tests, anchoring models, and integrated testing at Johnson Space Center to inform the evolving architectures and exploration systems being developed by the Human Spaceflight Architecture Team.  相似文献   

17.
《Acta Astronautica》2005,56(9-12):771-1047
The Humans In Space 2003 symposium, entitled "Living in Space: Scientific, Medical and Cultural Implications," was sponsored by the Canadian Space Agency and held in Banff, Alberta, from May 18-22, 2003. There were 150 papers presented in six theme areas: education, missions, physiology, psychology, radiation, and technology. The 32 papers in this volume are organized into Education/Outreach, Medical Care (Bedrest), Medical Care (Countermeasures), Medical Care, Missions (Mars), Missions (Neurolab), Missions (Historical Lessons), Physiology, Psychology, Radiation, Technology (Human Factors), and Technology.  相似文献   

18.
《Space Policy》2014,30(3):170-173
The Global Exploration Roadmap (GER) is driven by several goals and objectives that include space science, the search for life as well as preparatory science activities to enable human space exploration. The Committee on Space Research (COSPAR), through its Commissions and Panels provides an international forum that supports and promotes space exploration worldwide. COSPAR's Panel on Exploration (PEX) investigates a stepwise approach of preparatory research on Earth and in Low Earth Orbit (LEO) to facilitate a future global space exploration program. We summarize recent activities and workshops of PEX in support of the GER.  相似文献   

19.
Yasunori Matogawa   《Acta Astronautica》2007,61(11-12):1107-1115
50 years have passed since a tiny rocket “Pencil” was launched horizontally at Kokubunji near Tokyo in 1955. Though there existed high level of rocket technology in Japan before the end of the second World War, it was not succeeded by the country after the War. Pencil therefore was the substantial start of Japanese rocketry that opened the way to the present stage.In the meantime, a rocket group of the University of Tokyo contributed to the International Geophysical Year in 1957–1958 by developing bigger rockets, and in 1970, the group succeeded in injecting first Japanese satellite OHSUMI into earth orbit. It was just before the launch of OHSUMI that Japan had built up the double feature system of science and applications in space efforts. The former has been pursued by ISAS (the Institute of Space and Astronautical Science) of the University of Tokyo, and the latter by NASDA (National Space Development Agency). This unique system worked quite efficiently because space activities in scientific and applicational areas could develop rather independently without affecting each other.Thus Japan's space science ran up rapidly to the international stage under the support of solid propellant rocket technology, and, after a 20 year technological introduction period from the US, a big liquid propellant launch vehicle, H-II, at last was developed on the basis of Japan's own technology in the early 1990's. On October 1, 2003, as a part of Governmental Reform, three Japanese space agencies were consolidated into a single agency, JAXA (Japan Aerospace Exploration Agency), and Japan's space efforts began to walk toward the future in a globally coordinated fashion, including aeronautics, astronautics, space science, satellite technology, etc., at the same time. This paper surveys the history of Japanese rocketry briefly, and draws out the lessons from it to make a new history of Japan's space efforts more meaningful.  相似文献   

20.
Beginning in 1995, a team of 3-D engineering visualization experts assembled at the Lockheed Martin Space Systems Company and began to develop innovative virtual prototyping simulation tools for performing ground processing and real-time visualization of design and planning of aerospace missions. At the University of Colorado, a team of 3-D visualization experts also began developing the science of 3-D visualization and immersive visualization at the newly founded British Petroleum (BP) Center for visualization, which began operations in October, 2001. BP acquired ARCO in the year 2000 and awarded the 3-D flexible IVE developed by ARCO (beginning in 1990) to the University of Colorado, CU, the winner in a competition among 6 Universities. CU then hired Dr. G. Dorn, the leader of the ARCO team as Center Director, and the other experts to apply 3-D immersive visualization to aerospace and to other University Research fields, while continuing research on surface interpretation of seismic data and 3-D volumes. This paper recounts further progress and outlines plans in Aerospace applications at Lockheed Martin and CU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号