共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
给出了在ITAM最近投入使用的高超声速脉冲绝热压缩风洞AT-303中进行超燃冲压发动机模型实验的结果.实验马赫数M∞≈8,运行时间τ=50~60 ms,雷诺数范围Re1∞=2.7×106~4.0×107,模型表面的边界层自然转捩.在实验中,模型中有燃料供给:把气态氢以超过化学量比率的空气燃料因子注入到燃烧室.提供了足以发生氢燃料自点燃的流动条件.测量了沿进气道楔型压缩面和整个发动机通道上的纵向压力和热流分布.所获数据与同一模型在热射流风洞IT-302M(实验马赫数M∞≈6,8,运行时间τ=100~120 ms,雷诺数范围Re1∞=(1.3~1.8)×106,进气道压缩面和侧压缩面进行了边界层转捩).结果表明:实验模型发动机在两座风洞中进行实验所获得的流态类型相同.发动机刚刚启动时,在进气道入口及其下游的发动机通道内形成超声速流.注入氢后,首先在燃烧室内形成平均流速是超声速的燃烧流动.之后,在燃烧室出口出现热拥塞现象、在进气道扩压段产生伪激波流态.在两座风洞中进行了进气道和发动机通道的流动特征试验,获得了令人满意的结果. 相似文献
6.
对 8种进口M数为 2 .5的超燃冲压发动机模型燃烧室在各种驻点条件和燃料总体当量比下进行了实验 ,燃烧室构型、燃料壁面注射、支板注射、凹腔火焰稳定结构对发动机的性能影响进行了研究。一维简化模型进一步提出用于数据处理与分析 ,计算与实验结果基本上一致 ,对影响燃烧效率与总压损失的各因素进行了讨论。 相似文献
7.
基于响应面法进行了二维混合压缩超燃冲压发动机进气道的多目标优化研究.采用均匀试验设计确定试验方案,运用计算流体动力学求解进气道的性能.根据分析结果构造了响应面近似模型,该模型采用了完全二阶多项式模型.通过响应面近似模型的优化,实现了超燃冲压发动机进气道优化,得到了Pareto最优集.结果表明,采用均匀试验设计和响应面法可以大大减小数值模拟的计算量,提高优化效率. 相似文献
8.
9.
燃烧效率一维评价的影响因素研究 总被引:1,自引:0,他引:1
为拓展一维评价方法的适用性,笔者使用完整的一维方程组和一个氢气辅助煤油燃烧的实例,研究了影响一维方法评价燃烧效率的几个因素的作用程度,即平均分子量、平均定压比热和摩擦力系数,推荐了它们的选取范围和方法.在该研究实例提供的数据条件下,按照本方法选取平均分子量,给燃烧效率带来的不确定度不超过±0.05;针对反应过程中平均定压比热的变化情况,提出了分段计算的方法,该方法确定平均定压比热,在燃烧室出口给燃烧效率带来的不确定度不超过-0.01;忽略摩擦力会带来较大的误差,按照参考温度法计入摩擦力影响,和忽略摩擦力相比,燃烧效率评价精度提高0.1. 相似文献
10.
为研究乙烯燃料矩形截面超燃冲压发动机不同燃烧模态下的流动特性,在直连式试验的基础上对冷流和不同当量比的4个状态进行了三维定常数值模拟,比较了试验和计算结果,选择了适用于本构型的模态判别准则,给出了流道内壁面压力、一维平均马赫数的沿程分布规律,分析了各状态下流场中波系结构、流动分离及燃烧的特征。研究结果表明:采用AHL3D对该发动机进行三维计算所得壁面压力与试验壁压吻合良好,试验与计算具有较好的一致性;未注油的冷态情况下流道内形成由多道斜激波与膨胀波组成的反射波系,壁面压力波动较大,波系分布主要受流道结构影响;纯超燃模态时,燃料喷射与主流相互作用使注油位处形成明显激波,压升起点固定在注油位之后,注油位波系对流场结构的影响较大,同时分离结构分布在整个凹槽内;双模态超燃时,流道内主导波系是激波诱导边界层分离形成的斜激波串结构,燃烧室内波系较弱,此时隔离段内激波串前缘后的角区出现分离,凹槽内分离区域减小;双模态亚燃时,随着逆压梯度激波串的前移,隔离段内角区的分离面积不断扩大,凹槽内分离区进一步缩小。发动机处于双模态超燃或双模态亚燃模态时,随着激波串结构的形成与前移,部分燃烧可能在隔离段内完成;而对于纯超燃模态,燃烧仅发生在凹槽与扩张段内,化学反应与高温区的分布相对更集中。 相似文献
11.
纯净空气来流下的超声速燃烧实验装置及其初步实验结果 总被引:4,自引:0,他引:4
采用电阻加热的连续式实验设备,在燃烧室进口气流为高温纯净空气、马赫数Ma=2、总温Tt=1000K,总压Pt=0.8MPa条件下,进行了不同当量油气比的氢和乙烯燃料的超声速燃烧室直连式实验.采用从壁面垂直于主流喷射燃料和以氢作为先锋火焰,实现了乙烯燃料的可靠点火和稳定燃烧.实验测量了燃烧室的壁面压力、空气流量、燃料喷射压力、喷管进口总温等参数,并拍摄了燃烧室出口火焰.本文实验采用的电阻加热设备具有实验介质无污染、稳定运行时间长、工作性能稳定、成本低、操作简单等优点,其主要部件电阻加热器出口的最高温度可达600~1000K,对应的流量为1.5~0.73kg/s、加热器功率为750KW. 相似文献
12.
发动机燃烧流场温度的准确实时诊断对研究燃烧机理、提高燃烧效率及降低污染物排放等至关重要。分析了 TDLAS 技术二次谐波法免标定测温原理,实现了利用该技术对直联式超燃冲压发动机燃烧室内部温度的在线测量,并采用电控平移台扫描的方式实现了发动机出口与扩张段温度随空间变化的测量。结果表明该发动机燃烧特性主要有:(1)发动机出口与扩张段,氢气与乙烯两种燃料燃烧状况基本相同,且随着沿 y 轴自下往上扫描,温度逐渐升高;(2)发动机燃烧室内,氢气燃烧时的温度比乙烯燃烧时的温度要高和稳定;氢气燃烧过程温度基本处于2100K 左右,乙烯从点火至燃烧结束温度从2000K 左右逐渐降至1250K 左右。TDLAS 技术在复杂燃烧环境下的工程应用表明该技术具有抗干扰能力强、数据处理速度快的优点,可用于研制发动机燃烧场温度在线监测传感器。 相似文献
13.
混合模块发动机超燃模块进气道的数值仿真 总被引:2,自引:0,他引:2
对适用于轴对称混合模块发动机的超燃模块进气道进行了初步设计研究.采用数值方法,重点研究了中心锥压缩角、肩部倒圆半径、唇罩侧板前缘角度、隔离段长度、隔离段偏距等几何设计参数对进气道性能的影响规律,并提出了参数选择建议.结果表明:在研究范围内,中心锥压缩角、肩部倒圆半径、唇罩侧板前缘角度以及隔离段长度等参数对进气道性能影响较大,而隔离段偏距的影响较小. 相似文献
14.
H2/Air在两种不同的燃烧室尺寸、七种燃烧喷注方式下进行了系统的超声速燃烧实验。实验空气的滞止温度在2000K左右,滞止压力1~1.4MPa,总流量2kg/s,燃烧室进口马赫数2.5,可以模拟飞行M数为7的超燃冲压发动机中的燃烧工况。新开发的一维超声速燃烧程序SSC-1可以估算出燃烧室内的流场参数、燃烧效率和总压损失。计算结果与实验进行了比较,发现较好的一致。实验结果表明,利用垂直喷射,燃烧效率可以超过80%,同时不引起严重的总压损失。由燃烧室壁面静压分布与燃烧效率的分析发现,燃烧室燃料注射位置应避免过于集中,宜分散按规律分布,使燃烧室静压分布尽量平直以获得高燃烧效率。 相似文献
15.
对公开发表的用于超声速燃烧流场分析的几种一维模型进行了研究,指出了其中存在的问题。研究结果表明:基于实验静压数据的一维模型,若不借助必要的流场测量数据或分析结果,或借助于经验性的处理方法,单靠一维假设,无法获得较为完整的一维流场分析结果。改进后的一维模型降低了数据处理过程中的不确定性,提高了对一般情况的适应能力。用编制的计算程序SSC-2对两组典型的超燃燃烧室壁面静压实验数据进行了演算,取得了燃烧室出口总压恢复系数的计算值与测量值基本一致的好结果。 相似文献
16.
在吸气式发动机研究中,需要监测其进气道气流流场分布、燃烧室温度分布和燃烧产物浓度来验证燃烧室内的燃烧理论模型并最终改进发动机设计;同时,这些参数的实时获取还可以用来控制发动机工作状态以实现燃烧效率优化。TDLAS(可调谐半导体激光吸收光谱)技术具有结构紧凑、响应快速、灵敏度高和非入侵式测量等优点,在高温、高速和剧烈振动等恶劣工作环境下可实现随机飞行的发动机测量,因此被国外多家研究机构采用。调研了高超声速燃烧发动机研究项目 HIFiRE及其在传感器小型化方面所采用的技术手段,介绍已有的小型化设计思路和取得的进展。已集成的小型化系统体积为30×15×10cm3,重量<5kg,功耗<10W。经验证,该系统可在发动机地面试验条件下稳定工作,给未来随发动机飞行的小型化测温系统设计提供了参考。 相似文献