共查询到3条相似文献,搜索用时 0 毫秒
1.
Larry W. Esposito Charles A. Barth Joshua E. Colwell George M. Lawrence William E. McClintock A. Ian F. Stewart H. Uwe Keller Axel Korth Hans Lauche Michel C. Festou Arthur L. Lane Candice J. Hansen Justin N. Maki Robert A. West Herbert Jahn Ralf Reulke Kerstin Warlich Donald E. Shemansky Yuk L. Yung 《Space Science Reviews》2004,115(1-4):299-361
The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the Cassini orbiter spacecraft. UVIS has two spectrographic channels that provide images and spectra covering the ranges from 56 to 118 nm and 110 to 190 nm. A third optical path with a solar blind CsI photocathode is used for high signal-to-noise-ratio stellar occultations by rings and atmospheres. A separate Hydrogen Deuterium Absorption Cell measures the relative abundance of deuterium and hydrogen from their Lyman-α emission. The UVIS science objectives include investigation of the chemistry, aerosols, clouds, and energy balance of the Titan and Saturn atmospheres; neutrals in the Saturn magnetosphere; the deuterium-to-hydrogen (D/H) ratio for Titan and Saturn; icy satellite surface properties; and the structure and evolution of Saturn’s rings.This revised version was published online in July 2005 with a corrected cover date. 相似文献
2.
R. H. Brown K. H. Baines G. Bellucci J.-P. Bibring B. J. Buratti F. Capaccioni P. Cerroni R. N. Clark A. Coradini D. P. Cruikshank P. Drossart V. Formisano R. Jaumann Y. Langevin D. L. Matson T. B. Mccord V. Mennella E. Miller R. M. Nelson P. D. Nicholson B. Sicardy C. Sotin 《Space Science Reviews》2004,115(1-4):111-168
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date. 相似文献
3.
F. M. Flasar V. G. Kunde M. M. Abbas R. K. Achterberg P. Ade A. Barucci B. B’ezard G. L. Bjoraker J. C. Brasunas S. Calcutt R. Carlson C. J. C’esarsky B. J. Conrath A. Coradini R. Courtin A. Coustenis S. Edberg S. Edgington C. Ferrari T. Fouchet D. Gautier P. J. Gierasch K. Grossman P. Irwin D. E. Jennings E. Lellouch A. A. Mamoutkine A. Marten J. P. Meyer C. A. Nixon G. S. Orton T. C. Owen J. C. Pearl R. Prang’e F. Raulin P. L. Read P. N. Romani R. E. Samuelson M. E. Segura M. R. SHOWALTER A. A. Simon-Miller M. D. Smith J. R. Spencer L. J. Spilker F. W. Taylor 《Space Science Reviews》2004,115(1-4):169-297
The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.This revised version was published online in July 2005 with a corrected cover date. 相似文献