共查询到15条相似文献,搜索用时 15 毫秒
1.
In this paper, the attitude stabilization problem of a rigid spacecraft described by Rodrigues parameters is investigated via a composite control strategy, which combines a feedback control law designed by a finite time control technique with a feedforward compensator based on a linear disturbance observer (DOB) method. By choosing a suitable coordinate transformation, the spacecraft dynamics can be divided into three second-order subsystems. Each subsystem includes a certain part and an uncertain part. By using the finite time control technique, a continuous finite time controller is designed for the certain part. The uncertain part is considered to be a lumped disturbance, which is estimated by a DOB, and a corresponding feedforward design is then implemented to compensate the disturbance. Simulation results are employed to confirm the effectiveness of the proposed approach. 相似文献
2.
3.
Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques 总被引:3,自引:0,他引:3
In this paper, we consider the attitude stabilization problem for a rigid spacecraft with external disturbances. To obtain a better disturbance rejection property, we employ finite-time control techniques. In the absence of disturbances, by employing continuous finite-time control method, a continuous finite-time controller is designed such that the attitude of the rigid spacecraft will converge to the origin in finite time. In the presence of disturbances, by employing terminal sliding mode method, a discontinuous finite-time control law is proposed such that the states will eventually converge to a small region of the origin, which can be rendered as small as desired. Numerical simulation results show the effectiveness of the method. 相似文献
4.
To synchronize the attitude of a spacecraft formation flying system, three novel autonomous control schemes are proposed to deal with the issue in this paper. The first one is an ideal autonomous attitude coordinated controller, which is applied to address the case with certain models and no disturbance. The second one is a robust adaptive attitude coordinated controller, which aims to tackle the case with external disturbances and model uncertainties. The last one is a filtered robust adaptive attitude coordinated controller, which is used to overcome the case with input con- straint, model uncertainties, and external disturbances. The above three controllers do not need any external tracking signal and only require angular velocity and relative orientation between a spacecraft and its neighbors. Besides, the relative information is represented in the body frame of each spacecraft. The controllers are proved to be able to result in asymptotical stability almost everywhere. Numerical simulation results show that the proposed three approaches are effective for attitude coordination in a spacecraft formation flying system. 相似文献
5.
The dynamics of a rotating tethered satellite system (TSS) in the vicinity of libration points are highly nonlinear and inherently unstable. In order to fulfill the station-keep control of the rotating TSS along halo orbits, a nonlinear output tracking control scheme based on the θ- D technique is proposed. Compared with the popular time-variant linear quadratic regulator (LQR) controller, this approach overcomes some limitations such as on-line computations of the algebraic Riccati equation. Besides, the obtained nonlinear suboptimal controller is in a closed form and easy to implement. Numerical simulations show that the TTS trajectories track the periodic reference orbit with low energy consumption in the presence of both tether and initial injection errors. The axis of rotation can keep pointing to an inertial specific object to fulfill an observation mission. In addition, the thrusts required by the controller are in an acceptable range and can be implemented through some low-thrust propulsion devices. 相似文献
6.
This study presents an improved data-driven Model-Free Adaptive Control(MFAC)strategy for attitude stabilization of a partially constrained combined spacecraft with external disturbances and input saturation. First, a novel dynamic linearization data model for the partially constrained combined spacecraft with external disturbances is established. The generalized disturbances composed of external disturbances and dynamic linearization errors are then reconstructed by a Discrete Extended State Observer(DESO). With the dynamic linearization data model and reconstructed information, a DESO-MFAC strategy for the combined spacecraft is proposed based only on input and output data. Next, the input saturation is overcome by introducing an antiwindup compensator. Finally, numerical simulations are carried out to demonstrate the effectiveness and feasibility of the proposed controller when the dynamic properties of the partially constrained combined spacecraft are completely unknown. 相似文献
7.
Space deployable structures with large calibers, high accuracy, and large folding ratios are indispensable equipment in the aerospace field. Given that the single-DOF 3RR-3RRR deployable unit cannot be fully folded, this study proposes a 3UU-3URU deployable unit with two kinds of DOF: folding movement and orientation adjustment. First, based on the G-K formula, the DOF of the 3UU-3URU unit is analyzed. Then, the 3UU-3URU unit is used to construct a deployable truss antenna with a curved surface, and the DOF of the whole deployable antenna containing multiple 3UU-3URU units is calculated. The structural design of a deployable antenna with two loops is carried out with specific parameters and geometric relations. Next, a DOF simulation of a basic combination unit composed of three 3UU-3URU units is performed. Finally, a prototype of the basic combination unit is manufactured, and the DOF of the mechanism is experimentally verified. 相似文献
8.
Dynamics modeling and control of a transport aircraft for ultra-low altitude airdrop 总被引:1,自引:0,他引:1
The nonlinear aircraft model with heavy cargo moving inside is derived by using the separation body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furthermore, the nonlinear system is decoupled and linearized through the input–output feedback linearization method. On this basis, an iterative quasi-sliding mode(SM)flight controller for speed and pitch angle control is proposed. At the first-level SM, a global dynamic switching function is introduced thus eliminating the reaching phase of the sliding motion.At the second-level SM, a nonlinear function with the property of ‘‘smaller errors correspond to bigger gains and bigger errors correspond to saturated gains' ' is designed to form an integral sliding manifold, and the overcompensation of the integral term to big errors is weakened. Lyapunovbased analysis shows that the controller with strong robustness can reject both constant and time-varying model uncertainties. The performance of the proposed control strategy is verified in a maximum load airdrop mission. 相似文献
9.
Finite-time sliding mode attitude control for a reentry vehicle with blended aerodynamic surfaces and a reaction control system 总被引:1,自引:0,他引:1
This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time sliding mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency(PWPF) modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on–off switching-states of RCS thrusters.Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system. 相似文献
10.
Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer 总被引:1,自引:0,他引:1
An adaptive dynamic surface control(DSC)scheme is proposed for the multi-input and multi-output(MIMO)attitude motion of near-space vehicles(NSVs)in the presence of external disturbance,system uncertainty and input saturation.The external disturbance and the system uncertainty are efficiently tackled using a Nussbaum disturbance observer(NDO),and the adaptive controller is constructed by combining the dynamic surface control technique to handle the problem of‘‘explosion of complexity’’inherent in the conventional backstepping method.For handling the input saturation,an auxiliary system is designed with the same order as that of the studied MIMO attitude system.Using the error between the saturation input and the desired control input as the input of the designed auxiliary system,a series of signals are generated to compensate for the effect of the saturation in the dynamic surface control design.It is proved that the developed control scheme can guarantee that all signals of the closed-loop control system are semi-globally uniformly bounded.Finally,simulation results illustrate that the proposed control scheme can achieve satisfactory tracking performance under the composite effects of the input saturation and the external disturbance. 相似文献
11.
In this paper, a methodology has been developed to address the issue of force fighting and to achieve precise position tracking of control surface driven by two dissimilar actuators. The nonlinear dynamics of both actuators are first approximated as fractional order models. Based on the identified models, three fractional order controllers are proposed for the whole system. Two Fractional Order PID (FOPID) controllers are dedicated to improving transient response and are designed in a position feedback configuration. In order to synchronize the actuator dynamics, a third fractional order PI controller is designed, which feeds the force compensation signal in position feedback loop of both actuators. Nelder-Mead (N-M) optimization technique is employed in order to optimally tune controller parameters based on the proposed performance criteria. To test the proposed controllers according to real flight condition, an external disturbance of higher amplitude that acts as airload is applied directly on the control surface. In addition, a disturbance signal function of system states is applied to check the robustness of proposed controller. Simulation results on nonlinear system model validated the performance of the proposed scheme as compared to optimal PID and high gain PID controllers. 相似文献
12.
In this paper, dynamic modeling and control problem for transfer of a sloshing liquid container suspended through rigid massless links from a team of quadrotors are investigated. By the proposed solution, pose of the slung container and fluid sloshing modes are stabilized appropriately. Dynamics of the container-liquid-quadrotors system is modeled by Euler-Lagrange method. Fluid slosh dynamics is included using multi-mass-spring model. According to derived model, a proper control law is designed for a system with three or more quadrotors. Implementing the proposed control law, quadrotors can control pose of the container, directions of the links and liquid sloshing modes simultaneously. Stability of closed loop system of tracking errors and sloshing modes are demonstrated using a theory of singularly perturbed systems and Lyapunov stability theorem. Also, the capability of the proposed feedback control laws in solving a formerly organized transport problem of a liquid filled container has been demonstrated in simulations. Moreover, priority of the proposed control scheme to an existing slung load controller in the literature is demonstrated. 相似文献
13.
This paper considers the guidance and control problem of a flight vehicle with side-window detection. In order to guarantee the target remaining in the seeker's sight of view, the line of sight and the attitude of the flight vehicle should be under some constraints caused by the side-window, which leads to coupling between the guidance and the attitude dynamics model. To deal with the side-window constraints and the coupling, a novel Integrated Guidance and Control (IGC) design approach is proposed. Firstly, the relative motion equations are derived in the body-Line of Sight (LOS) coordinate system. And the guidance and control problem of the flight vehicle is formulated into an IGC problem with state constraints. Then, based on the singular perturbation method, the IGC problem is decomposed into the control design of the quasi-steady-state subsystem and the boundary-layer subsystem which can be designed separately. Finally, the receding horizon control is applied to the control design for the two subsystems. Simulation results show the effectiveness of the proposed approach. 相似文献
14.
针对天基高能脉冲激光清理低轨(LEO)空间碎片的问题,建立了高能脉冲激光清理LEO碎片作用过程和轨道演化的模型,推导了脉冲激光作用碎片的最佳角度与碎片轨道参数的解析关系,证明了最佳角度下的清理效果具有关于碎片轨道主轴对称的特性。以平台飞行时间和激光作用时间综合优化为目标,提出了一种天基激光清理空间碎片过程的简化设计方法,能快速有效地获得清理方案。选取典型的激光器与空间碎片参数进行仿真验证,结果表明:采用最佳作用角度能极大提高激光清理的效果;基于优化设计方法可使得在平台飞行时间仅增长10%情况下激光作用时间减少30%。 相似文献