首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose a novel anti-disturbance attitude control law for combined spacecraft with an improved closed-loop control allocation scheme. More specifically, a saturated approach is adopted to guarantee the global asymptotic stability under control input saturation. To enhance the robustness of the system, a nonlinear disturbance observer is constructed to compensate the disturbances caused by inertial parameter uncertainty and unmodeled dynamics. Next, the quadratic programming algorithm is used to obtain an optimal open-loop control allocation scheme, where both energy consumption and actuator saturation have been considered in the allocation of the virtual control command. Then, a modified closed-loop control allocation scheme is proposed to reduce the allocation error under the actuator uncertainty. Finally, stability analysis of the closed-loop system with the proposed allocation scheme is provided. Simulation results confirm the effectiveness of the proposed control scheme.  相似文献   

2.
卫星姿态控制系统容错控制综述   总被引:1,自引:0,他引:1  
姜斌  张柯  杨浩  程月华  马亚杰  成旺磊 《航空学报》2021,42(11):524662-524662
主要针对卫星姿态系统容错控制研究领域已有的成果进行了回顾。总结了国内外卫星容错控制的现有成果,主要从卫星姿态控制系统的可重构性、单体卫星容错控制和卫星编队容错控制3个部分对相关的研究成果进行了归纳分析。其中,卫星姿态系统的可重构性从重构目标和系统功能要求两方面进行分析;对单体卫星容错控制现状的介绍主要从自适应技术、滑模理论、预设性能、干扰观测器、故障估计观测器几个方面展开;卫星编队容错控制方法从独立容错、协同容错、拓扑重构和组成重构的角度进行阐述。最后进行总结,并展望了卫星姿态控制系统容错控制领域未来可能出现的新问题和研究思路。  相似文献   

3.
As the deployment, supporting, and stability mechanisms of satellite antennas, space-deployable mechanisms play a key role in the field of aerospace. In order to design truss deployable antenna supporting mechanisms with large folding rate, high accuracy, easy deployment and strong stability, aiming at the geometric division of the parabolic reflector, a novel method based on symmetric hexagonal division and its corresponding modular truss deployable antenna mechanism is proposed, and the original method based on asymmetric triangular division and its corresponding mechanisms are presented for comparative analysis. Then, the screw theory is employed to analyze the mobility of different mechanisms. Furthermore, the improved three-dimensional mesh method is used to divide the reflector surface of a large parabolic antenna designed by the two different methods, and the profile accuracy and the type of links are taken as the evaluation indexes to quantitatively analyze the division results. Finally, a three-dimensional model of the modular deployable mechanism based on the symmetric hexagonal design is developed, and the deployable mechanisms with different configurations based on the two design methods are compared and analyzed from the mechanical perspective. The research results provide a good theoretical reference for the design of deployable truss antenna mechanisms and their application in the aerospace field.  相似文献   

4.
In this paper, the attitude stabilization problem of a rigid spacecraft described by Rodrigues parameters is investigated via a composite control strategy, which combines a feedback control law designed by a finite time control technique with a feedforward compensator based on a linear disturbance observer (DOB) method. By choosing a suitable coordinate transformation, the spacecraft dynamics can be divided into three second-order subsystems. Each subsystem includes a certain part and an uncertain part. By using the finite time control technique, a continuous finite time controller is designed for the certain part. The uncertain part is considered to be a lumped disturbance, which is estimated by a DOB, and a corresponding feedforward design is then implemented to compensate the disturbance. Simulation results are employed to confirm the effectiveness of the proposed approach.  相似文献   

5.
In this paper,attitude coordinated tracking control algorithms for multiple spacecraft formation are investigated with consideration of parametric uncertainties,external disturbances,communication delays and actuator saturation.Initially,a sliding mode delay-dependent attitude coordinated controller is proposed under bounded external disturbances.However,neither inertia uncertainty nor actuator constraint has been taken into account.Then,a robust saturated delay dependent attitude coordinated control law is further derived,where uncertainties and external disturbances are handled by Chebyshev neural networks (CNN).In addition,command filter technique is introduced to facilitate the backstepping design procedure,through which actuator saturation problem is solved.Thus the spacecraft in the formation are able to track the reference attitude trajectory even in the presence of time-varying communication delays.Rigorous analysis is presented by using Lyapunov-Krasovskii approach to demonstrate the stability of the closed-loop system under both control algorithms.Finally,the numerical examples are carried out to illustrate the efficiency of the theoretical results.  相似文献   

6.
冯海强  张科  王红梅 《飞行力学》2011,29(2):67-69,73
对于具有不确定性的多输人多输出非线性系统,仅用v0线性化设计方法不能获得好的控制结果.为此,设计了自适应模糊控制器,把I/O线性化方法和自适应模糊控制相结合,构成混合控制器.并将此控制器引人到卫星大角度机动控制系统中,以补偿由系统的不确定性所造成的跟踪误差,从而增强I/O线性化控制器的鲁棒性,最终实现零误差跟踪.  相似文献   

7.
机载拖曳天线动力学建模与仿真   总被引:2,自引:0,他引:2  
拖曳天线在空中的构型及垂直度是检验天线能否正常发射甚低频信号的主要依据,是设计人员必须着重考虑的因素.通过对其运动状态及其受力进行分析,建立机载甚低频拖曳天线动力学模型.针对其稳态动力学模型,运用Newton-Raphson迭代进行求解,计算出了天线垂直构型和天线的张力分布情况.通过与AD报告计算结果进行比较,证明所建立的动力学模型是可信的.最后分析了空气系数和天线末端质量对天线垂直构型和天线张力分布的影响.  相似文献   

8.
王晓峰  黄海 《航空动力学报》2007,22(11):1958-1962
分析了三轴稳定卫星姿态控制分系统与其它分系统的耦合关系,选定了姿态稳定方式和姿态控制系统硬件,建立了更为精确的计算姿态控制分系统质量和功率的分析模型,然后基于多学科设计优化协同优化算法建立了总体系统、姿态控制分系统、电源分系统和结构分系统的优化模型,最后用C语言对分析模型和优化模型编程计算.结果表明,分系统模型能与总体系统模型有效协调优化,得到更好的总体性能指标.   相似文献   

9.
In this paper, we consider the attitude stabilization problem for a rigid spacecraft with external disturbances. To obtain a better disturbance rejection property, we employ finite-time control techniques. In the absence of disturbances, by employing continuous finite-time control method, a continuous finite-time controller is designed such that the attitude of the rigid spacecraft will converge to the origin in finite time. In the presence of disturbances, by employing terminal sliding mode method, a discontinuous finite-time control law is proposed such that the states will eventually converge to a small region of the origin, which can be rendered as small as desired. Numerical simulation results show the effectiveness of the method.  相似文献   

10.
This research concerns a novel attitude stabilization structure for a ducted-fan aerial robot to work against modeling error and strong external transient disturbance, and it focuses on two main control targets: modeling error compensation, and the improvement of disturbance resistance along the rolling channel. For the first research objective, we proposed an adaptive nominal controller with the reconfigurable control law design based on the estimation of the modeling error found in the closed-...  相似文献   

11.
程月华  江文建  杨浩  薛琪  廖鹤 《航空学报》2020,41(z1):723778-723778
针对卫星姿态控制系统(ACS)闭环回路的故障难以辨识的问题,引入深度森林算法,实现执行机构与传感器故障识别。首先针对可获取的少量卫星姿态控制系统遥测数据,结合系统动力学特性,研究合适的特征选择和特征提取方法,再结合深度森林算法进行故障信息学习与辨识,建立故障预测模型,实现执行机构故障与传感器故障的识别。半物理仿真结果表明:在存在气浮台干扰力矩、卫星转动惯量未知、飞轮非线性特性、闭环故障传播等多种不利因素情况下,深度森林算法对于执行机构和传感器故障具有高效的识别能力。  相似文献   

12.
This paper investigates the consensus disturbance rejection problem among multiple high-order agents with directed graphs.Based on disturbance observers,distributed consensus disturbance rejection protocols are constructed in leaderless and leader-follower consensus setups.Different from the previous related papers,the consensus protocols in this paper are developed in a fully distributed fashion,relying on only the state information of each agent and its neighbors.Sufficient conditions are prov...  相似文献   

13.
飞机结构受损会导致飞机质量、重心和气动特性发生突变、对称性破坏以及较强的运动耦合,严重影响飞行安全.以机翼受损飞机为研究对象,采用质量微元法建立重心偏移飞机的动力学模型,分析其动态特性,并设计了基于自抗扰控制的姿态控制器.仿真结果表明,自抗扰控制器表现出良好的控制性能,针对突然受损情况设计的控制器具有较强的鲁棒性,能实时补偿结构受损引起的干扰力矩,快速准确地跟踪控制指令.  相似文献   

14.
This paper addresses the attitude control problem of a space tethered robot platform in the presence of unknown external disturbance caused by a connecting elastic tether. The tether-generated unknown disturbance leads to tremendous challenges for attitude control of the platform. In this work, the perturbed attitude dynamics of the platform are derived with a consideration of the libration of the elastic tether, and then with the purpose of compensating the unknown disturbance, major attention is dedicated to develop a nonlinear disturbance observer based on gyros measurements, after which, an adaptive attitude scheme is proposed by combining the disturbance observer with a sliding mode controller. Finally, benefits from the observer based on an adaptive controller are validated by series of numerical simulations.  相似文献   

15.
卫星微振动及控制技术进展   总被引:2,自引:0,他引:2  
孟光  周徐斌 《航空学报》2015,36(8):2609-2619
高分辨率是卫星发展的重要方向,而制约卫星有效载荷分辨率提高的重要因素之一就是卫星微振动。因此,近年来卫星微振动及其控制问题越来越受到关注。本文从微振动的来源和特点出发,按照微振动传递路径上的控制方式,对国内外微振动领域的研究成果进行了总结。在此基础上,重点介绍了微振动控制技术在卫星微振动领域的应用,并按照微振动控制的方式,介绍了微振动被动控制、微振动主动控制以及大挠性部件微振动控制方法。结合工程实际应用,对微振动控制设计中需要注意的刚度、阻尼及多自由度耦合性问题进行了说明。同时,简单介绍了工程上常用的其他微振动控制方法。最后,对微振动控制的发展作了简短评述和展望。  相似文献   

16.
In this paper, the satellite attitude control system subject to parametric perturbations,external disturbances, time-varying input delays, actuator faults and saturation is studied. In order to make the controller architecture simple and practical, the closed-loop system is transformed into a disturbance-free nominal system and an equivalent disturbance firstly. The equivalent disturbance represents all above uncertainties and actuator failures of the original system. Then a robust controller is...  相似文献   

17.
On-orbit spacecraft face many threats, such as collisions with debris or other spacecraft.Therefore, perception of the surrounding space environment is vitally important for on-orbit spacecraft.Spacecraft require a dynamic attitude tracking ability with high precision for such missions.This paper aims to address the above problem using an improved backstepping controller.The tracking mission is divided into two phases: coarse alignment and fine alignment.In the first phase,a traditional saturation controller is utilized to limit the maximum attitude angular velocity according to the actuator's ability.For the second phase, the proposed backstepping controller with different virtual control inputs is applied to track the moving target.To fulfill the high precision attitude tracking requirements, a hybrid attitude control actuator consisting of a Control Moment Gyro(CMG) and Reaction Wheel(RW) is constructed, which can simultaneously avoid the CMG singularity and RW saturation through the use of an angular momentum optimal management strategy, such as null motion.Finally, five simulation scenarios were carried out to demonstrate the effectiveness of the proposed control strategy and hybrid actuator.  相似文献   

18.
The attitude control problem of a spacecraft underactuated by two single-gimbal control moment gyros (SGCMGs) is investigated. Small-time local controllability (STLC) of the attitude dynamics of the spacecraft-SGCMGs system is analyzed via nonlinear controllability theory. The conditions that guarantee STLC of the spacecraft attitude by two non-coaxial SGCMGs are obtained with the momentum of the SGCMGs as inputs, implying that the spacecraft attitude is STLC when the total angular momentum of the whole system is zero. Moreover, our results indi- cate that under the zero-momentum restriction, full attitude stabilization is possible for a spacecraft using two non-coaxial SGCMGs. For the case of two coaxial SGCMGs, the STLC property of the spacecraft cannot be determined. In this case, an improvement to the previous full attitude stabilizing control law, which requires zero-momentum presumption, is proposed to account for the singu- larity of SGCMGs and enhance the steady state performance. Numerical simulation results demonstrate the effectiveness and advantages of the new control law.  相似文献   

19.
To synchronize the attitude of a spacecraft formation flying system, three novel autonomous control schemes are proposed to deal with the issue in this paper. The first one is an ideal autonomous attitude coordinated controller, which is applied to address the case with certain models and no disturbance. The second one is a robust adaptive attitude coordinated controller, which aims to tackle the case with external disturbances and model uncertainties. The last one is a filtered robust adaptive attitude coordinated controller, which is used to overcome the case with input con- straint, model uncertainties, and external disturbances. The above three controllers do not need any external tracking signal and only require angular velocity and relative orientation between a spacecraft and its neighbors. Besides, the relative information is represented in the body frame of each spacecraft. The controllers are proved to be able to result in asymptotical stability almost everywhere. Numerical simulation results show that the proposed three approaches are effective for attitude coordination in a spacecraft formation flying system.  相似文献   

20.
The dynamics of a rotating tethered satellite system (TSS) in the vicinity of libration points are highly nonlinear and inherently unstable. In order to fulfill the station-keep control of the rotating TSS along halo orbits, a nonlinear output tracking control scheme based on the θ- D technique is proposed. Compared with the popular time-variant linear quadratic regulator (LQR) controller, this approach overcomes some limitations such as on-line computations of the algebraic Riccati equation. Besides, the obtained nonlinear suboptimal controller is in a closed form and easy to implement. Numerical simulations show that the TTS trajectories track the periodic reference orbit with low energy consumption in the presence of both tether and initial injection errors. The axis of rotation can keep pointing to an inertial specific object to fulfill an observation mission. In addition, the thrusts required by the controller are in an acceptable range and can be implemented through some low-thrust propulsion devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号