首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
齿轮传动中,两啮合轮齿非工作齿面间的间隙称为齿轮副侧隙。在制造齿轮时,常用下列参数之一来控制齿轮副侧隙: 1.固定弦齿厚S; 2.圆棒测量跨距M; 3.公法线平均长度L。在HD125发动机变速齿轮传动中,采用的是第三种侧隙控制参数。现以第二档啮合齿轮为例(其它档次情况相似),来分析一下  相似文献   

2.
螺旋锥齿轮啮合刚度及参数振动稳定性研究   总被引:1,自引:1,他引:1  
准确计算时变啮合刚度是齿轮系统动力学研究的基础.针对航空高速重载螺旋锥齿轮,基于轮齿接触分析(TCA)和轮齿加载接触分析(LTCA)通过计算瞬时接触点的轮齿变形柔度建立了时变啮合刚度数值模型;将齿轮时变啮合刚度在一个啮合周期内视为逐段线性,基于Floquet理论推导了含时变刚度参数振动系统的状态转换矩阵解析式;通过修正小轮机床调整参数设计三种接触情况,分析了算例齿轮在相同载荷工况下的接触轨迹、传动误差、重合度和时变啮合刚度;采用二自由度齿轮系统动力学模型考察工作转速范围内的周期运动不稳定区间,分析了时变啮合刚度对螺旋锥齿轮系统参数振动稳定性的影响.   相似文献   

3.
基于Kriging模型和遗传算法的齿轮修形减振优化   总被引:1,自引:0,他引:1  
杨丽  佟操  陈闯  郭秋萍 《航空动力学报》2017,32(6):1412-1418
针对齿轮修形优化时计算啮合刚度计算量大、计算精度低、操作繁琐等问题,提出一种基于Kriging模型和遗传算法的齿轮减振修形优化算法.以典型直齿轮传动为例开展齿轮修形优化,通过拉丁抽样建立Kriging模型,解决齿轮修形优化的多响应和隐式函数的问题,通过Kriging预测的啮合刚度与有限元法的对比可知,时变啮合刚度函数各参数的误差最大值为7.79×10-5,1.20×10-3及1.30×10-4,验证了Kriging多响应预测啮合刚度函数的精确性.将Kriging预测函数代入直齿轮啮合传动的动力学微分方程,采用遗传优化算法时将齿轮动态传动误差响应波动最小作为优化目标,得到最优的齿轮修形参数.算例表明:相比于ISO(International Standardization Organization)修形和未修形的齿轮,该算法的减振效果最好,验证了基于遗传算法与Kriging模型对齿轮进行修形优化的正确性、高效性.相比于直接采用有限元法进行齿轮修形优化,该算法计算时间由26.91d减小为2.24h,证明了该算法计算效率的优越性.   相似文献   

4.
基于遗传算法的弧齿锥齿轮动态特性优化设计   总被引:1,自引:3,他引:1  
赵宁  康士朋  郭辉  熊剑波  程昌 《航空动力学报》2010,25(10):2396-2402
基于集中质量法建立了弧齿锥齿轮八自由度弯-轴-扭三维空间动力学模型,在模型中考虑了啮合刚度的时变性、几何传动误差的非线性、齿面侧隙以及支承刚度的非线性.采用Runge-Kutta法对传动系统动态响应进行求解.在此基础上,以啮合周期内动态特性指标——振动加速度均方根作为优化目标函数,使用遗传算法对局部综合法中的齿面控制参数进行优化.在对设计参数进行优化的同时也获得了齿轮副最优加工参数.最终以齿面修形的方式实现了航空弧齿锥齿轮动态特性优化,减小了齿轮传动系统的振动与噪声.   相似文献   

5.
QKS-3仪表的计时机构部分采取多级渐开线齿轮传动,该仪表要求齿轮传动灵活,不发生卡滞现象。这除了要求齿轮侧隙大、齿面、轴颈及孔的光洁度高以外,我们在哈尔滨工业大学王丕增老师的指导下,对齿轮瞬时传动效率进行了计算,根据一对齿从进入啮合到退出啮合传动效率的变化规律及我厂多年的生产经验,我们认识到还有以下两方面的因素能提高齿轮传动灵活性,即: 1.尽量使齿轮传动的瞬时效率提高; 2.尽量使主动轮齿顶园角减小,而被动  相似文献   

6.
基于响应面法齿轮啮合传动可靠性灵敏度分析   总被引:18,自引:2,他引:18  
李昌  韩兴 《航空动力学报》2011,26(3):711-715
建立三维参数化齿轮啮合有限元模型,利用ANSYS软件对其进行仿真计算,得到齿轮啮合的接触应力变化规律.基于响应面方法综合考虑齿轮各参数的原始制造误差以及转速、载荷等不同工况对齿轮传动的影响,对齿轮啮合传动进行多次随机虚拟试验,得出其可靠度,并以定量的概率给出各参数的可靠性灵敏度.计算结果得出了各个参数原始制造误差对齿轮...  相似文献   

7.
三维修形对薄轮缘斜齿轮共振应力影响的实验研究   总被引:1,自引:0,他引:1  
以8对具有不同辐板布置薄轮缘斜齿轮传动为对象,通过实验研究了三维修形对斜齿轮共振应力的影响。运用建立在有限元法、柔度矩阵和数学规划法基础上的三维修形方法获得了每对齿轮副的修形曲线。结果表明,采用三维修形技术将显著降低薄轮缘斜齿轮中的应力波动和振动水平,有利于延长齿轮传动的工作寿命。  相似文献   

8.
针对由弧齿锥齿轮和行星轮系构成的直升机传动系统,构建了纯扭振动模型,采用集中参数法建立了齿侧间隙非线性动力学方程.通过有限元方法求得了时变啮合刚度,采用4-5阶变步长Runge-Kutta法对动力学方程进行了数值求解,借助动载系数、相图、Poincaré截面图、快速傅里叶变换频谱图等分析手段,研究了传动系统在时变啮合刚度、齿侧间隙、综合传动误差、外载荷等多种激励作用下系统的动载特性.结果表明啮合刚度对传动系统的影响最大,动载系数最大值为1.5;齿侧间隙对系统响应特性的影响是有限的;啮合误差在一定程度上抑制了齿轮系统的振动;外载荷波动对不同速级的影响不同,动载系数最大值发生在并车传动.  相似文献   

9.
针对直齿圆锥齿轮啮合刚度的计算问题,从微元思想出发,将变截面齿廓划分为若干等截面微段齿段,基于能量等效建立微段齿段啮合刚度计算模型,并利用积分方法获得单齿啮合刚度。此外,基于力平衡和变形协调条件进一步提出了齿轮时变啮合刚度计算模型,同时根据几何关系导出了相应传动误差计算式。利用有限元分析对解析计算模型进行了验证,并分析了误差来源。结果表明:利用该模型不仅能够将直齿锥齿轮啮合刚度计算精度保证在2%以内,还达到了快速求解的目的。   相似文献   

10.
根据人字齿轮传动的结构,考虑时变啮合刚度、齿侧间隙,并把齿廓修形作为一种时变齿侧间隙计入,建立了单级人字齿轮传动的弯-扭-轴耦合动力学模型和相应的非线性动力学方程.对方程的数值解进行分析,发现合理的修形使人字齿轮传动不发生齿面的完全分离.基于多尺度法对不发生齿面完全分离时的人字齿轮传动系统进行了摄动分析,得到了系统在主共振频率附近幅频响应的近似解析解.相比数值方法,解析法具有很高的求解效率.最后,根据近似解析解研究了修形参数对动载系数幅值的影响.研究发现:螺旋角越大使动载系数最小所需的修形量越大,而所需的修形长度越小.另外,使动载系数最小的最优修形参数解域呈新月形,其随着主动轮支承刚度的增大而先增大后减小;随着被动轮支承刚度的增大而持续减小.   相似文献   

11.
基于齿条-齿轮等切共轭产形原理,构建齿面数值模型、ease-off差齿面,对ease-off蕴含的齿面啮合信息进行解析,获得了齿面接触路径、传动误差、接触线瀑布图;综合ease-off拓扑仿真与轮齿刚度非线性单元耦合解析,给出了修形拓扑齿面的啮合刚度、承载传动误差的计算方法。沿接触路径遍历接触线序列,获得了轮齿时变啮合刚度、承载传动误差与载荷分布图;给出了2阶抛物面对称与对角拓扑两种修形形式算例,求出了系列载荷作用下的啮合刚度、承载传动误差、齿面载荷分布。结果显示:随着载荷的增加,轮齿啮合刚度时变效应明显减弱;承载传动误差波动与啮合刚度、修形梯度密切相关;对角修形在啮合刚度、传动误差、载荷分布特性方面好于对称修形。   相似文献   

12.
齿轮减速器系统可变固有特性动力学研究   总被引:6,自引:1,他引:6  
考虑到齿轮传动啮合刚度的波动和传动误差的影响以及轴承支撑刚度的作用,对二级齿轮减速器传动系统进行了理论建模和动态响应分析,并与实验结果进行了比较。结果表明,齿轮传动在单齿啮合区和双齿啮合区之间啮合刚度变化较大;减速器系统的动态特性 (固有频率、固有振型、阻尼等 )随啮合周期而发生变化,呈现出一种可变的动态固有特性。故对于系统进行研究时,可分别按单齿区和双齿区平均啮合刚度进行分析,一般可以满足实际工程要求。  相似文献   

13.
星型齿轮传动非线性动力学建模与动载荷研究   总被引:8,自引:3,他引:8  
本文建立了星型齿轮传动的弯扭耦合非线性动力学计算模型,模型中考虑了原动机和负载惯性,齿轮副的啮合综合误差,齿轮的偏心误差,时变啮合刚度以及齿轮的啮合间隙。采用适当的广义坐标变换,将线性恢复力和非线性恢复力共存的动力学方程组统一成矩阵形式,用数值解法获得了在有间隙非线性的情况下受强参数激励和多频激励的系统的动态响应和动载荷历程。最后给出了一个算例,讨论了间隙、齿频误差和偏心误差对齿轮系统的响应、动载荷以及各星轮的载荷分配均匀性的影响。并研究了刚度和误差激励和间隙的相互耦合关系,得出了对星型齿轮传动设计和制造有意义的结论。   相似文献   

14.
马艳红  曹冲  郝勇  张博  洪杰 《航空动力学报》2015,30(11):2753-2761
考虑齿轮传动风扇发动机(GTF)风扇转子与低压转子的耦合关系,提出了转子系统简化整体模型,针对该模型给出了GTF发动机转子系统的临界转速计算方法.揭示了整体模型与单转子模型临界转速计算结果的差异,以及典型力学特征参数对GTF转子系统临界转速与模态特征的影响.计算结果表明:相比考虑耦合关系的整体模型,将风扇转子与低压转子分开计算会导致转子系统固有频率值偏移及部分临界转速丢失;齿轮箱安装支承刚度增大会使得系统临界转速上升,保持安装刚度大小在106N/m量级以下可使系统动力特性较优;传扭轴段刚度与齿轮径向啮合刚度对系统动力特性影响较小.   相似文献   

15.
斜齿轮啮合刚度变化规律研究   总被引:5,自引:2,他引:5  
利用基于线性规划法计算啮合刚度和载荷分布的改进方法,分别计算了一对内、外啮合斜齿轮在不同螺旋角时的啮合刚度,总结了啮合刚度在一个啮合周期内的变化规律.计算结果表明,所有参与啮合轮齿形成的啮合线总长度是决定啮合刚度大小的主要因素,在进入啮合和退出啮合的瞬时位置,啮合刚度会减小.通过与航空工业部标准(HB/Z 84.1-1984)算法的计算结果比较,浅析了轮缘厚度对啮合刚度的影响.   相似文献   

16.
具有时变刚度传动误差及间隙的齿轮系统动力学分析   总被引:3,自引:0,他引:3  
建立了 4 自由度的直齿圆柱齿轮系统的非线性动力学方程。该方程包含了时变啮合刚度、传动误差及间隙。利用齿轮结构的旋转对称性,提出了用一个啮合齿对上的参数表示其它啮合齿对上参数的方法。为了求解方程,提出了一种有效的数值方法——基于打靶法的局部参数化延拓法。该方法不但能够得到非线性振动微分方程的周期解,而且特别适合处理含奇异点的非线性特征值问题。最后给出了一个数值计算示例。  相似文献   

17.
概述国标及航标《小模数齿轮及其传动公差》中,均明确指出:双面啮合综合测量(简称双啮)是现代小模数齿轮成批生产中控制齿轮精度及侧隙的最佳检验方法。并明文规定:对一般常用的齿轮推荐优先选用双啮检验。“标准齿轮”是开展齿轮双啮检验必备的标准元件,它是测量齿轮的基准。在精密仪器和仪表制造工业中,现在广泛采用了m=0.15的小模数齿轮。多年来,由于国内尚无一家生产m=0.15的小模数标准齿轮,致使该规格的齿轮不能广泛地采用双啮检验。为贯彻新标准,尽快对m=0.15的小模数  相似文献   

18.
某型航空发动机在使用时发生中央传动失效故障,故障首断件为中央传动从动锥齿轮,断口性质为高周疲劳。为剖析 齿轮啮合与故障之间的关系,建立了包含主、从动锥齿轮的有限元模型,采用准静态的方法将啮合过程分成50个加载步,分析啮 合过程中从动锥齿轮应力分布情况。结果表明:在啮合过程中从动锥齿轮最大应力位置不是裂纹起始部位。通过行波共振分析、 振动应力测试、加工缺陷影响分析及故障复现试验,确定故障发生的主要原因为从动锥齿轮4节径后行波共振和啮合状态较差, 而故障位置加工状态较差对故障的发生也起到促进作用。分析结果表明:齿轮节径型振动是航空发动机齿轮主要的破坏原因之 一,在工作转速范围内节径型前、后行波振动均有可能被激起;齿轮啮合状态异常会显著提高振动应力水平。采用调整齿数、齿 宽、辐板厚度等方式可将共振转速调出常用工作转速范围,避免齿轮发生振动疲劳破坏。  相似文献   

19.
分析了现有胶合承载能力计算中平均摩擦因数计算方法的不足之处,根据节点外啮合齿轮传动的啮合特点,以相关标准中渐开线圆柱齿轮的计算公式为基础,提出了一种更为合理且精度较高的平均摩擦因数计算方法,以满足节点外啮合齿轮胶合承载能力计算的需要.通过对内、外啮合副节点前啮合和节点后啮合实例的计算,得出除外啮合节点前啮合以外,利用标准计算得到的平均摩擦因数的误差都超过18.5%,而改进计算方法所得的误差都在6.5%之内,证实了这种改进的平均摩擦因数计算方法具有更高的精度,而且这一计算方法也适用于标准齿轮传动.   相似文献   

20.
封闭行星齿轮传动系统的扭振特性研究   总被引:8,自引:4,他引:4  
本文建立了封闭行星齿轮传动系统的扭振计算模型,模型中考虑了行星轮和星轮的啮合相位,行星架的弹性变形和负载惯性。用数值解法获得了在受周期性变化的齿轮啮合刚度和齿频综合误差激励下的齿轮啮合动载荷和在不同的输入转速下的动载荷系数。分析了在星形轮系和行星轮系动力耦合情况下齿轮系统的动态特性,得出了对封闭行星齿轮传动设计有意义的结论。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号