共查询到15条相似文献,搜索用时 68 毫秒
1.
利用支持向量机(SVM)模型对大磁暴期间Dst指数进行预报研究.以1995-2014年期间的80次大磁暴(Dst≤-100nT)事件共2662组观测数据为研究对象,以对应时间的太阳风参数为模型输入参数,同时建立了神经网络模型和线性机模型进行对比,并利用交叉验证提高预测结果的可靠性.为比较不同模型的预测效果,选用相关系数(CC)、均方根误差(RMS)、磁暴期间Dst指数最小值预测结果的平均绝对误差以及Dst指数最小值出现时间预测结果的平均绝对误差等统计量作为对比参数.结果显示SVM模型的预测效果最好,其中相关系数为0.89,均方根误差为24.27nT,所有磁暴事件的最小Dst值预测平均绝对误差为17.35nT,最小Dst值出现时间的预测平均绝对误差为3.2h.为进一步检验模型对不同活动水平磁暴预报效果的可能差异,将所有磁暴事件分为大磁暴(-200 相似文献
2.
对实际统计数据中存在的相关性、不确定性和非线性问题,提出贝叶斯支持向量机预测模型方法.构建基于高斯分布的权值分布模型描述信息的不确定性,基于先验概率分布和贝叶斯关系获得后验分布模型,利用极大似然方法和递推迭代算法求解后验分布的最佳参数,从而得到关联向量机.建立起基于参数分布多维时间序列预测模型,将每一步迭代过程中的支持向量机输入作为随机变量,考虑数据不确定性的传递,递推得到贝叶斯支持向量机预测输出.由于贝叶斯支持向量机可以有效反映随机影响及其传递,可以克服数据不确定性和相关性的影响,因此基于贝叶斯支持向量机预测效果更加符合实际.实例表明利用贝叶斯支持向量机预测高科技企业发展趋势与实际发展趋势接近,可以克服数据相关性、不确定性和非线性对信息模型的影响,具有较高的预测精度和预测鲁棒性. 相似文献
3.
基于回归型支持向量机的空战目标威胁评估 总被引:4,自引:2,他引:4
空战目标威胁评估是协同多目标攻击中的关键问题.针对传统空战目标威胁评估方法在确定权重系数方面的不足,提出了一种新的基于回归型支持向量机的评估方法.在分析了现有的空战目标威胁评估方法中距离威胁模型存在缺陷的基础上,提出了改进的距离威胁模型.建立了基于回归型支持向量机的空战目标威胁评估模型,利用该模型对想定的空战目标进行了威胁评估.仿真结果表明,该方法具有很好的预测能力,可以快速、准确地完成空战目标威胁评估. 相似文献
4.
基于支持向量机的滚动轴承状态寿命评估 总被引:1,自引:1,他引:1
应用状态寿命描述滚动轴承的使用寿命,并建立了滚动轴承的状态寿命评估模型.状态寿命评估模型建模的关键是振动信号的特征提取和状态的识别算法.针对滚动轴承振动的特点,提取小波包重构信号的频带能量构造特征向量,利用支持向量机作为辨识算法建立滚动轴承状态寿命评估模型.滚动轴承全寿命试验验证了模型的有效性和可信性. 相似文献
5.
标准近似支持向量机受类别差异影响和噪声、野值数据干扰较重,使得分类能力不高.提出一种改进的近似支持向量机算法——加权近似支持向量机,通过为不同类别设定不同的惩罚参数和为每个样本引入模糊隶属值,有效补偿类别差异带来的倾向性并去除噪声和野值数据的影响.模糊隶属函数的选取采用样本与类中心的距离和样本紧密度的加权平均值计算,以有效去除噪声和野值数据的干扰.经过分析,改进后的算法可近似归结为一种岭回归模型.实验表明,与标准近似支持向量机相比,该算法有更好的分类能力. 相似文献
6.
提出了一种结合支持向量机(SVM,Support Vector Machines)回归与小波变换的新的静态图像压缩方法.SVM回归方法可以学习原始数据之间的相关性,并采用小部分训练样本,即支持向量来稀疏表示原始数据集,利用这一特性来逼近和约减小波系数,可以达到数据压缩的效果.首先采用小波变换把原始图像分解成不同尺度的多个子带,由于最低频子带系数非常重要,采用DPCM直接编码,然后对其它频带系数采用SVM回归进行压缩.由于不同尺度和方向的小波系数特征不同,为尽可能去除小波系数间的各种相关性,给出了适合SVM回归的小波系数的有效组织方式.最后研究了支持向量及其相应权重的混合编码方法.实验结果表明:与同类压缩方法相比,本算法获得的恢复图像的主客观质量有明显提高. 相似文献
7.
为提高机场鸟击防范管理水平,实现探鸟雷达与多种驱鸟设备联动,提出一种基于支持向量机(SVM)的机场智能驱鸟决策方法。该方法包括训练和测试两部分。训练部分利用机场鸟类探测预警与驱赶联动系统获取的大量历史鸟情信息,结合专家知识,通过数据预处理与支持向量机训练,建立驱鸟策略分类模型;测试部分根据驱鸟实时智能决策结果,对驱鸟策略分类模型进行持续修正与优化。通过某机场的实测鸟情信息数据与若干驱鸟实例,证明驱鸟策略分类模型具有较高的决策正确率,并能够通过自身修正与优化应对各种新问题。本文方法针对实时鸟情信息,实现了多种驱鸟设备的优化组合,克服了驱鸟设备长期重复运行造成的鸟类对驱鸟设备的耐受性问题,极大改善了驱鸟效果。 相似文献
8.
根据船舶自航模15°/5°Z形试验结果,应用最小二乘支持向量机对船舶操纵运动进行了黑箱建模,针对支持向量机参数选择的不确定性,使用网格搜索法进行了参数寻优;应用所建立的支持向量机回归模型对该自航模的10°/1°,25°/5°Z形试验及35°回转试验进行了操纵运动预报.预报结果同试验结果相比吻合良好,证明了支持向量机应用于船舶操纵运动黑箱建模的有效性,以及网格搜索法在支持向量机参数寻优中的可行性. 相似文献
9.
为了解决非线性数据和非线性函数的回归问题,采用了支持向量机序列最小优化算法.原始序列最小优化(SMO,Sequential Minimal Optimization)算法存在训练速度慢和训练结果不稳定的缺点,为了能加快SMO算法的训练速度和提高训练结果稳定性,通过改进优化乘子更新方法、采用双阈值法、预存核函数、增加停机准则等方法对SMO算法做了改进.仿真实验表明,改进的算法能很好地对非线性数据和非线性函数进行回归,具有比原始SMO算法更快的训练速度和稳定的训练结果. 相似文献
10.
针对质心分类算法容易产生归纳偏置或模型失配问题的不足,提出一种基于支持向量的迭代修正质心分类算法.该方法仅使用由支持向量机(SVMs,Support Vector Machines)选出的支持向量来构造质心向量,然后利用训练集误分样本来迭代修正初始质心向量.与其他分类算法相比,该算法取得较好的宏平均F1和微平均F1,在8个常用文本分类数据集上的实验验证了该算法的有效性,特别是在不均衡文本语料上. 相似文献
11.
锂电池具有轻便安全、循环寿命长和安全性能好等优点,作为一个被广泛应用的储能电源,锂电池健康管理和寿命预测是国内外研究的热点。建立锂电池寿命预测方法和模型,基于实验历史数据,建立电池衰减模型从而对整个电池的工作状态进行评估,及时对设备进行维护和替换,以确保电池工作的稳定。对相关向量机(RVM)的核函数进行了组合改进,优化了RVM的性能,减小了锂电池寿命预测的偏差度,提高了预测精度。 相似文献
12.
基于NN与SVM的图像质量评价模型 总被引:1,自引:1,他引:1
为了有效地评价图像质量,利用峰值信噪比(PSNR,Pear Signal to Noise Ratio)和结构相似度(SSIM,Structure Similarity)作为图像质量的描述参数,给出"野点"的定义,提出"野点预测"并基于神经网络(NN,Neural Network)与支持向量机(SVM,Support Vector Machines)建立新的质量评价模型:神经网络用来获取质量评价映射函数,支持向量机实现样本分类.采用UTexas图像库数据进行仿真试验,质量评价模型预测图像质量的单调性比PSNR提高7.42% ,质量评价模型预测结果的均方误差平方根比PSNR提高36.06%,模型性能测试中"野点"的数目相对减少,模型性能得以提高.试验结果表明该模型的输出能有效地反映图像的主观质量. 相似文献
13.
Hao Peng Xiaoli Bai 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(10):2628-2646
Due to the lack of information such as the space environment condition and resident space objects’ (RSOs’) body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs’ trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: (1) the ML model can be used to improve the same RSO’s orbit information that is not available during the learning process but shares the same time interval as the training data; (2) the ML model can be used to improve predictions of the same RSO at future epochs; and (3) the ML model based on a RSO can be applied to other RSOs that share some common features. 相似文献
14.
基于EMD与LS-SVM的刀具磨损识别方法 总被引:1,自引:0,他引:1
针对刀具磨损声发射信号的非平稳特征和BP神经网络学习算法收敛速度慢、易陷入局部极小值等问题,提出了基于经验模态分解和最小二乘支持向量机的刀具磨损状态识别方法.首先对声发射信号进行经验模态分解,将其分解为若干个固有模态函数之和,然后分别对每一个固有模态函数进行自回归建模,最后提取每一个自回归模型的系数组成特征向量,特征向量被分为两组,一组用于对最小二乘支持向量机训练,另一组用于识别刀具磨损状态.试验结果表明:该方法能很好地识别刀具磨损状态,与BP神经网络相比具有更高的识别率. 相似文献
15.
在管材数控(NC)弯曲过程中,可能出现起皱、过度减薄的质量缺陷,同时会不可避免地发生回弹,都将严重影响成形质量。为了对数控弯曲成形质量进行预测,提出了使用有限元模拟与机器学习相结合的方法,并建立了快速的成形质量预测方法。首先,建立了有效的管材数控弯曲的参数化有限元模型,在工艺参数取值范围中随机选择进行大量的模拟实验作为样本,完成学习数据的挖掘。随后,基于径向基函数(RBF)神经网络建立壁厚减薄与回弹程度的预测模型并使用支持向量机(SVM)建立管材起皱的预测模型。最后,使用模型对新的实例进行预测,并利用模拟与数控弯曲实验对预测模型进行验证。 该方法可以对大直径薄壁管材数控弯曲质量进行有效的预测,提高弯曲管件零件设计效率。 相似文献