首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceres appears likely to be differentiated and to have experienced planetary evolution processes. This conclusion is based on current geophysical observations and thermodynamic modeling of Ceres?? evolution. This makes Ceres similar to a small planet, and in fact it is thought to represent a class of objects from which the inner planets formed. Verification of Ceres?? state and understanding of the many steps in achieving it remains a major goal. The Dawn spacecraft and its instrument package are on a mission to observe Ceres from orbit. Observations and potential results are suggested here, based on number of science questions.  相似文献   

2.
3.
The Dawn Gravity Investigation at Vesta and Ceres   总被引:2,自引:0,他引:2  
The objective of the Dawn gravity investigation is to use high precision X-band Doppler tracking and landmark tracking from optical images to measure the gravity fields of Vesta and Ceres to a half-wavelength surface resolution better than 90-km and 300-km, respectively. Depending on the Doppler tracking assumptions, the gravity field will be determined to somewhere between harmonic degrees 15 and 25 for Vesta and about degree 10 for Ceres. The gravity fields together with shape models determined from Dawn??s framing camera constrain models of the interior from the core to the crust. The gravity field is determined jointly with the spin pole location. The second degree harmonics together with assumptions on obliquity or hydrostatic equilibrium may determine the moments of inertia.  相似文献   

4.
The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids?? landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn??s framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta??s geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.  相似文献   

5.
The Dawn Framing Camera   总被引:1,自引:0,他引:1  
The Framing Camera (FC) is the German contribution to the Dawn mission. The camera will map 4 Vesta and 1 Ceres through a clear filter and 7 band-pass filters covering the wavelengths from the visible to the near-IR. The camera will allow the determination of the physical parameters of the asteroids, the reconstruction of their global shape as well as local topography and surface geomorphology, and provide information on composition via surface reflectance characteristics. The camera will also serve for orbit navigation. The resolution of the Framing Camera will be up to 12 m per pixel in low altitude mapping orbit at Vesta (62 m per pixel at Ceres), at an angular resolution of 93.7 ??rad?px?1. The instrument uses a reclosable front door to protect the optical system and a filter-wheel mechanism to select the band-pass for observation. The detector data is read out and processed by a data processing unit. A power converter unit supplies all required power rails for operation and thermal maintenance. For redundancy reasons, two identical cameras were provided, both located side by side on the +Z-deck of the spacecraft. Each camera has a mass of 5.5 kg.  相似文献   

6.
Dawn??s ion propulsion system (IPS) is the most advanced propulsion system ever built for a deep-space mission. Aside from the Mars gravity assist it provides all of the post-launch ??V required for the mission including the heliocentric transfer to Vesta, orbit capture at Vesta, transfer to various Vesta science orbits, escape from Vesta, the heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to the different Ceres science orbits. The ion propulsion system provides a total ??V of nearly 11 km/s, comparable to the ??V provided by the 3-stage launch vehicle, and a total impulse of 1.2×107 N?s.  相似文献   

7.
Vesta and Ceres are the largest members of the asteroid belt, surviving from the earliest phases of Solar System history. They formed at a time when the asteroid belt was much more massive than it is today and were witness to its dramatic evolution, where planetary embryos were formed and lost, where the collisional environment shifted from accretional to destructive, and where the current size distribution of asteroids was sculpted by mutual collisions and most of the asteroids originally present were lost by dynamical processes. Since these early times, the environment of the asteroid belt has become relatively quiescent, though over the long history of the Solar System the surfaces of Vesta and Ceres continue to record and be influenced by impacts, most notably the south polar cratering event on Vesta. As a consequence of such impacts, Vesta has contributed a significant family of asteroids to the main belt, which is the likely source of the HED meteorites on Earth. No similar contribution to the main belt (or meteorites) is evident for Ceres. Through studies of craters, the surfaces of these asteroids will offer an opportunity for Dawn to probe the modern population of small asteroids in a size regime not directly observable from Earth.  相似文献   

8.
The Dawn spacecraft is designed to travel to and operate in orbit around the two largest main belt asteroids, Vesta and Ceres. Developed to meet a ten-year life and fully redundant, the spacecraft accommodates an ion propulsion system, including three ion engines and xenon propellant tank, utilizes large solar arrays to power the engines, carries the science instrument payload, and hosts the hardware and software required to successfully collect and transmit the scientific data back to Earth. The launch of the Dawn spacecraft in September 2007 from Cape Canaveral Air Force Station was the culmination of nearly five years of design, development, integration and testing of this unique system, one of the very few scientific spacecraft to rely on ion propulsion. The Dawn spacecraft arrived at its first destination, Vesta, in July 2011, where it will conduct science operations for twelve months before departing for Ceres.  相似文献   

9.
摄动力对绕飞小行星航天器轨道的影响   总被引:1,自引:0,他引:1  
刘莹莹  刘睿  周军 《飞行力学》2008,26(3):44-48
绕小行星运行的航天器由于受到摄动力的影响,运行轨迹会偏离二体假设下的圆锥曲线轨道。分析摄动力对航天器轨道的影响是测量控制系统设计的先导。以绕飞谷神星的航天器为例,考虑各种摄动对航天器轨道的影响,建立了非球形摄动力、太阳光压摄动力以及太阳引力摄动力的数学模型,从理论上分析了这些摄动力对航天器绕飞轨道的影响,并仿真验证了理论分析结论,直观描绘了所有摄动作用下小行星的椭圆绕飞轨道。  相似文献   

10.
The Dawn science operations team has designed the Vesta mission within the constraints of a low-cost Discovery mission, and will apply the same methodology to the Ceres mission. The design employs proactive mapping mission strategies and tactics such as functional redundancy, adaptability to trajectory uncertainties, and easy sequence updates to deliver reliable and robust sequences. Planning tools include the Science Opportunity Analyzer and other multi-mission tools, and the Science time-ordered listings. Science operations are conducted jointly by the Science Operations Support Team at the Jet Propulsion Laboratory (JPL) and the Dawn Science Center at the University of California, Los Angeles (UCLA). The UCLA Dawn Science Center has primary responsibility for data archiving while the JPL team has primary responsibility for spacecraft and instrument operations. Constraints and uncertainties in the planning and sequencing environment are described, and then details of the science plan are presented for each mission sub-phase. The plans indicate that Dawn has a high probability of meeting its science objectives and requirements within the imposed constraints.  相似文献   

11.
The Dawn mission??s Education and Public Outreach (E/PO) program takes advantage of the length of the mission, an effort to maintain level funding, and the exceptional support of the science and engineering teams to create formal and informal educational materials that bring STEM content and modes of thinking to students of all ages. With materials that are based on researched pedagogical principles and aligned with science education standards, Dawn weaves together many aspects of the mission to engage students, teachers, and the general public. E/PO tells the story of the discovery of the asteroid belt, uncovers principles of physics behind the ion propulsion that powers the spacecraft, and explains what we can learn from the instrumentation and how the mission??s results will expand our understanding of the origins of the solar system. In this way, we not only educate and inform, we build anticipation and expectation in the general public for the spacecraft??s arrival at Vesta in 2011 and three years later at Ceres. This chapter discusses the organization, strategies, formative assessment and dissemination of these materials and activities, and includes a section on lessons learned.  相似文献   

12.
Vesta and Ceres: Crossing the History of the Solar System   总被引:1,自引:0,他引:1  
The evolution of the Solar System can be schematically divided into three different phases: the Solar Nebula, the Primordial Solar System and the Modern Solar System. These three periods were characterized by very different conditions, both from the point of view of the physical conditions and from that of the processes there were acting through them. Across the Solar Nebula phase, planetesimals and planetary embryos were forming and differentiating due to the decay of short-lived radionuclides. At the same time, giant planets formed their cores and accreted the nebular gas to reach their present masses. After the gas dispersal, the Primordial Solar System began its evolution. In the inner Solar System, planetary embryos formed the terrestrial planets and, in combination with the gravitational perturbations of the giant planets, depleted the residual population of planetesimals. In the outer Solar System, giant planets underwent a violent, chaotic phase of orbital rearrangement which caused the Late Heavy Bombardment. Then the rapid and fierce evolution of the young Solar System left place to the more regular secular evolution of the Modern Solar System. Vesta, through its connection with HED meteorites, and plausibly Ceres too were between the first bodies to form in the history of the Solar System. Here we discuss the timescale of their formation and evolution and how they would have been affected by their passage through the different phases of the history of the Solar System, in order to draw a reference framework to interpret the data that Dawn mission will supply on them.  相似文献   

13.
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave observations in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfvén waves and particle precipitation related to solar and magnetospheric processes. We review ionospheric processes as well as surface and space weather phenomena that drive the coupling between the troposphere and the ionosphere. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface perturbations and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and to solve inverse problems and outline in a final section a few challenging subjects that are important to advance our understanding of tropospheric-ionospheric coupling.  相似文献   

14.
SESAME is an instrument complex built in international co-operation and carried by the Rosetta lander Philae intended to land on comet 67P/Churyumov-Gerasimenko in 2014. The main goals of this instrument suite are to measure mechanical and electrical properties of the cometary surface and the shallow subsurface as well as of the particles emitted from the cometary surface. Most of the sensors are mounted within the six soles of the landing gear feet in order to provide good contact with or proximity to the cometary surface. The measuring principles, instrument designs, technical layout, operational concepts and the results from the first in-flight measurements are described. We conclude with comments on the consequences of the last minute change of the target comet and how to improve and to preserve the knowledge during the long-duration Rosetta mission.  相似文献   

15.
Aymeric Spiga  Don Banfield  Nicholas A. Teanby  François Forget  Antoine Lucas  Balthasar Kenda  Jose Antonio Rodriguez Manfredi  Rudolf Widmer-Schnidrig  Naomi Murdoch  Mark T. Lemmon  Raphaël F. Garcia  Léo Martire  Özgür Karatekin  Sébastien Le Maistre  Bart Van Hove  Véronique Dehant  Philippe Lognonné  Nils Mueller  Ralph Lorenz  David Mimoun  Sébastien Rodriguez  Éric Beucler  Ingrid Daubar  Matthew P. Golombek  Tanguy Bertrand  Yasuhiro Nishikawa  Ehouarn Millour  Lucie Rolland  Quentin Brissaud  Taichi Kawamura  Antoine Mocquet  Roland Martin  John Clinton  Éléonore Stutzmann  Tilman Spohn  Suzanne Smrekar  William B. Banerdt 《Space Science Reviews》2018,214(7):109
In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars.  相似文献   

16.
采用动态密度泛函理论(DDFT)对ABA型球状三嵌段共聚物在平板间的相行为进行了模拟研究。考查了不同强度的表面诱导对三嵌段共聚物自组装的影响。通过逐渐增大衬底作用,发现了多种偏离于本体的新结构,如浸润层相、平行柱状相、穿孔层相、层状相。发现浸润层相存在的表面场范围与短链的熵效应密切相关,同时熵效应的大小则依赖于长短链段的长度之比。在很多实际存在的嵌段共聚物中,如果在适当的实验条件下,应可以观察到模拟计算所预言的相结构。  相似文献   

17.
Tamtsiea  M. E.  Mitrovica  J. X.  Davis  J. L.  Milne  G. A. 《Space Science Reviews》2003,108(1-2):81-93
Rapid ice mass variations within the large polar ice sheets lead to distinct and highly non-uniform sea-level changes that have come to be known as ‘sea-level fingerprints’. We explore in detail the physics of these fingerprints by decomposing the total sea-level change into contributions from radial perturbations in the two bounding surfaces: the geoid (or sea surface) and the solid surface. In the case of a melting event, the sea-level fingerprint is characterized by a sea-level fall in the near-field of the ice complex and a gradually increasing sea-level rise (from 0.0 to 1.3 times the eustatic value) as one considers sites at progressively greater distances (up to ≈ 90° or so) from the ice sheet. The far-field redistribution is largely driven by the relaxation of the sea-surface as the gravitational pull of the ablating ice sheet weakens. The near-field sea-level fall is a consequence of both this relaxation and ocean-plus-ice unloading of the solid surface. We argue that the fingerprints provide a natural explanation for geographic variations in sea-level (e.g., tide gauge, satellite) observations. Therefore, they furnish a methodology for extending traditional analyses of these observations to estimate not only the globally averaged sea-level rate but also the individual contributions to this rate (i.e., the sources). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The instruments on the Dawn spacecraft are exceptionally well suited to characterize and map the surface composition of Vesta in an integrated manner. These include a framing camera with multispectral capabilities, a high spectral resolution near-infrared imaging spectrometer, and a gamma-ray and neutron spectrometer. Three examples of issues addressed at Vesta are: (1) What is the composition of Vesta??s interior and differentiation state as exposed by the Great South Crater? (2) How has space weathering affected Vesta, both globally and at a local scale? and (3) Are volatiles or hydrated material present on Vesta??s surface? We predict that Dawn finds many surprises, such as an olivine-bearing mantle exposed near the south-pole, a weakly or un-weathered surface that has been relatively recently resurfaced, and a very thin layer of surficial volatiles derived from interaction with the solar wind.  相似文献   

19.
This paper reports the results of an experimental study of heat transfer using a model of the internal cooled surface of the turbine blade leading edge. We investigated a joint action of air jets and hemispherical protrusions on heat transfer from the concave surface of the leading edge model to air.  相似文献   

20.
The rapidly rotating giant planets of the outer solar system all possess strong dynamo-driven magnetic fields that carve a large cavity in the flowing magnetized solar wind. Each planet brings a unique facet to the study of planetary magnetism. Jupiter possesses the largest planetary magnetic moment, 1.55×1020 Tm3, 2×104 times larger than the terrestrial magnetic moment whose axis of symmetry is offset about 10° from the rotation axis, a tilt angle very similar to that of the Earth. Saturn has a dipole magnetic moment of 4.6×1018 Tm3 or 600 times that of the Earth, but unlike the Earth and Jupiter, the tilt of this magnetic moment is less than 1° to the rotation axis. The other two gas giants, Uranus and Neptune, have unusual magnetic fields as well, not only because of their tilts but also because of the harmonic content of their internal fields. Uranus has two anomalous tilts, of its rotation axis and of its dipole axis. Unlike the other planets, the rotation axis of Uranus is tilted 97.5° to the normal to its orbital plane. Its magnetic dipole moment of 3.9×1017 Tm3 is about 50 times the terrestrial moment with a tilt angle of close to 60° to the rotation axis of the planet. In contrast, Neptune with a more normal obliquity has a magnetic moment of 2.2×1017 Tm3 or slightly over 25 times the terrestrial moment. The tilt angle of this moment is 47°, smaller than that of Uranus but much larger than those of the Earth, Jupiter and Saturn. These two planets have such high harmonic content in their fields that the single flyby of Voyager was unable to resolve the higher degree coefficients accurately. The four gas giants have no apparent surface features that reflect the motion of the deep interior, so the magnetic field has been used to attempt to provide this information. This approach works very well at Jupiter where there is a significant tilt of the dipole and a long baseline of magnetic field measurements (Pioneer 10 to Galileo). The rotation rate is 870.536° per day corresponding to a (System III) period of 9 h 55 min 26.704 s. At Saturn, it has been much more difficult to determine the equivalent rotation period. The most probable rotation period of the interior is close to 10 h 33 min, but at this writing, the number is still uncertain. For Uranus and Neptune, the magnetic field is better suited for the determination of the planetary rotation period but the baseline is too short. While it is possible that the smaller planetary bodies of the outer solar system, too, have magnetic fields or once had, but the current missions to Vesta, Ceres and Pluto do not include magnetic measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号