首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The linear theory of MHD resonant waves in inhomogeneous plasmas is reviewed. The review starts from discussing the properties of driven resonant MHD waves. The dissipative solutions in Alfvén and slow dissipative layers are presented. The important concept of connection formulae is introduced. Next, we proceed on to non-stationary resonant MHD waves. The relation between quasi-modes of ideal MHD and eigenmodes of dissipative MHD are discussed. The solution describing the wave motion in non-stationary dissipative layers is given. It is shown that the connection formulae remain valid for non-stationary resonant MHD waves. The initial-value problem for resonant MHD waves is considered. The application of theory of resonant MHD waves to solar physics is discussed.  相似文献   

2.
Reggiani  N.  Guzzo  M.M.  de Holanda  P.C. 《Space Science Reviews》2003,107(1-2):89-97
We analyze here how solar neutrino experiments could detect time fluctuations of the solar neutrino flux due to magnetohydrodynamics (MHD) perturbations of the solar plasma. We state that if such time fluctuations are detected, this would provide a unique signature of the Resonant Spin-Flavor Precession (RSFP) mechanism as a solution to the Solar Neutrino Problem. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Since their discovery, spicules have attracted increased attention as energy/mass bridges between the dense and dynamic photosphere and the tenuous hot solar corona. Mechanical energy of photospheric random and coherent motions can be guided by magnetic field lines, spanning from the interior to the upper parts of the solar atmosphere, in the form of waves and oscillations. Since spicules are one of the most pronounced features of the chromosphere, the energy transport they participate in can be traced by the observations of their oscillatory motions. Oscillations in spicules have been observed for a long time. However the recent high-resolution and high-cadence space and ground based facilities with superb spatial, temporal and spectral capacities brought new aspects in the research of spicule dynamics. Here we review the progress made in imaging and spectroscopic observations of waves and oscillations in spicules. The observations are accompanied by a discussion on theoretical modelling and interpretations of these oscillations. Finally, we embark on the recent developments made on the presence and role of Alfvén and kink waves in spicules. We also address the extensive debate made on the Alfvén versus kink waves in the context of the explanation of the observed transverse oscillations of spicule axes.  相似文献   

4.
5.
This work addresses the observational and physical effects of particle beams in the solar atmosphere. Mainly electron beams are considered, but also some effects of proton and neutral beams are mentioned. Briefly describing acceleration mechanisms of superthermal particles, the main attention is devoted to effects influencing the particle beam propagation. The collisional energy losses and pitch-angle scattering, return current effects, mirroring in the converging magnetic field, and the scattering in the Alfvén and whistler wave turbulence in specific situations are considered. The role of quasi-linear relaxation is discussed. Examples of observations showing effects of particle beams in the solar atmosphere are presented throughout the paper. Separate chapters are devoted to processes connected with particle beam bombardment of dense layers of the solar atmosphere: hard X-ray and -ray flare emissions, evaporation process, asymmetry of optical chromospheric lines, and impact linear H line polarization. The beam induced energy release processes are also included. The presented effects of particle beams are summarized in the conclusions and future prospects are suggested.  相似文献   

6.
Magneto-gravity Waves Trapped in the Lower Solar Corona   总被引:1,自引:0,他引:1  
The possibility of trapped magneto-gravity waves in the lower solar corona with an open magnetic field is discussed. Intensity variations and/or Doppler shifts of relevant UV, EUV and x-ray spectral lines in the chromosphere, transition region and lower corona may reveal the existence of such low-frequency modes (with periods longer than ∼ 1.5 hour). The spectrum may be either discrete or continuous depending on the reflection property of the narrow transition region. These modes can be utilized to probe the dynamics of the upper chromosphere, transition region and lower corona; they may also play an important role in coronal heating. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Charged molecular clusters, traditionally called small ions, carry electric currents in atmospheres. Charged airborne particles, or aerosol ions, play an important role in generation and evolution of atmospheric aerosols. Growth of ions depends on the trace gas content, which is highly variable in the time and space. Even at sub-ppb concentrations, electrically active organic compounds (e.g. pyridine derivatives) can affect the ion composition and size. The size and mobility are closely related, although the form of the relationship varies depending on the critical diameter, which, at 273 K, is about 1.6 nm. For ions smaller than this the separation of quantum levels exceeds the average thermal energy, allowing use of a molecular aggregate model for the size-mobility relation. For larger ions the size-mobility relation approaches the Stokes-Cunningham-Millikan law. The lifetime of a cluster ion in the terrestrial lower atmosphere is about one minute, determined by the balance between ion production rate, ion-ion recombination, and ion-aerosol attachment.  相似文献   

8.
This “rapporteur” report discusses the solar photosphere and low chromosphere in the context of chemical composition studies. The highly dynamical nature of the photosphere does not seem to jeopardize precise determination of solar abundances in classical fashion. It is still an open question how the highly dynamical nature of the low chromosphere contributes to first ionization potential (FIP) fractionation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
We present a brief overview of the probable velocity-shear induced phenomena in solar plasma flows. Shear-driven MHD wave oscillations may be the needed mechanism for the generation of solar Alfvén waves, for the transmission of fast waves through the transition region, and for the acceleration of the solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Strongly damped Doppler shift oscillations are observed frequently associated with flarelike events in hot coronal loops. In this paper, a review of the observed properties and the theoretical modeling is presented. Statistical measurements of physical parameters (period, decay time, and amplitude) have been obtained based on a large number of events observed by SOHO/SUMER and Yohkoh/BCS. Several pieces of evidence are found to support their interpretation in terms of the fundamental standing longitudinal slow mode. The high excitation rate of these oscillations in small- or micro-flares suggest that the slow mode waves are a natural response of the coronal plasma to impulsive heating in closed magnetic structure. The strong damping and the rapid excitation of the observed waves are two major aspects of the waves that are poorly understood, and are the main subject of theoretical modelling. The slow waves are found mainly damped by thermal conduction and viscosity in hot coronal loops. The mode coupling seems to play an important role in rapid excitation of the standing slow mode. Several seismology applications such as determination of the magnetic field, temperature, and density in coronal loops are demonstrated. Further, some open issues are discussed.  相似文献   

11.
This rapporteur paper discusses the solar corona and the solar wind in the context of their chemical composition. The abundances of elements, both obtained by optical and by in situ observations, are used to infer the sources of the slow solar wind and of the fast streams. The first ionisation potential (FIP) fractionation effect is also discussed, in particular the agreed basics and the open questions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
This paper studies the response of the middle atmosphere to the 11-year solar cycle. The study is based on numerical simulations with the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), a chemistry climate model that resolves the atmosphere from the Earth’s surface up to about 250 km. Results presented here are obtained in two multi-year time-slice runs for solar maximum and minimum conditions, respectively. The magnitude of the simulated annual and zonal mean stratospheric response in temperature and ozone corresponds well to observations. The dynamical model response is studied for northern hemisphere winter. Here, the zonal mean wind change differs substantially from observations. The statistical significance of the model’s dynamical response is, however, poor for most regions of the atmosphere. Finally, we discuss several issues that render the evaluation of model results with available analyses of observational data of the stratosphere and mesosphere difficult. This includes the possibility that the atmospheric response to solar variability may depend strongly on longitude.  相似文献   

13.
Feldman  U.  Dammasch  I.E.  Wilhelm  K. 《Space Science Reviews》2000,93(3-4):411-472
The solar upper atmosphere (SUA) is defined as the volume above the photosphere occupied by plasmas with electron temperatures, T e, above 2×104 K. Until the Skylab era, only little was known about the morphology of the SUA, while the quality of the spectroscopic observations was continually improving. A spherically symmetric atmosphere was assumed at that time, in which the temperature increased with height. With advances in the observational techniques, it became apparent that the morphology of the SUA was very complex even during the minimum of the magnetic activity cycle. In particular, spectroscopic measurements with high spectral and spatial resolution, which were made in the light of ultraviolet emission lines representing a variety of temperatures, led to the conclusion that most of the radiation from the solar transition region could not be explained by assuming a continuous chromosphere-corona interface, but rather by a region of unresolved fine structures. Recent observational results obtained by modern instruments, such as the Extreme-ultraviolet Imaging Telescope (EIT), the Large Angle Spectroscopic Coronagraph (LASCO), and the Solar Ultraviolet Measurements of (SUMER) spectrograph on the Solar and Heliospheric Observatory (SOHO), as well as the Transition Region and Coronal Explorer (TRACE), and their interpretations will be presented in this review of our understanding of the morphology of the SUA.  相似文献   

14.
This paper contains a summary of the topics treated in the working group on abundance variations in the solar atmosphere and in the solar wind. The FIP bias (overabundance of particles with low First Ionization Potentials over photospheric abundances) in coronal holes and coronal hole associated solar wind amounts to values between 1 and 2. The FIP bias in the slow solar wind is typically a factor 4, consistent with optical observations in streamers. In order to distinguish between different theoretical models which make an attempt to explain the FIP bias, some observable parameters must be provided. Unfortunately, many models are deficient in this respect. In addition to FIP fractionation, gravitational settling of heavy elements has been found in the core of long lived streamers. The so-called electron 'freeze in' temperatures derived from in situ observed ionization states of minor ions in the fast wind are significantly higher than the electron temperatures derived from diagnostic line ratios observed in polar coronal holes. The distinction between conditions in plumes and interplume lanes needs to be further investigated. The 'freeze in' temperatures for the slow solar wind are consistent with the electron temperatures derived for streamers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The interaction of the solar wind with the Martian exosphere and ionosphere leads to significant loss of atmosphere from the planet. Spacecraft data confirm that this is the case. However, the issue is how much is actually lost. Given that spacecraft coverage is sparse, simulation is one of the few ways for these estimates to be made. In this paper the evolution of our attempts to place bounds on this loss rate will be addressed. Using a hybrid particle code the loss rate with respect to solar EUV flux is addressed as well as a variety of numerical and chemical issues. The progress made has been of an evolutionary nature, with one approach tried and tested followed by another as the simulations are improved and better estimates are produced. The results to be reported suggest that the ion loss rates are high enough to explain the loss of water from Mars during earlier solar epochs.  相似文献   

16.
Recent spectroscopic measurements from instruments on the Solar and Heliospheric Observatory (SOHO) find that the coronal composition above a polar coronal hole is nearly photospheric. However, similar SOHO observations show that in coronal plasmas above quiet equatorial regions low-FIP elements are enhanced by a factor of ≈ 4. In addition, the process of elemental settling in coronal plasmas high above the solar surface was shown to exist. Measurements by the Ulysses spacecraft, which are based on non-spectroscopic particle counting techniques, show that, with the exception of He, the elemental composition of the fast speed solar wind is similar to within a factor of 1.5 to the composition of the photosphere. In contrast, similar measurements in the slow speed wind show that elements with low first ionization potential (FIP < 10 eV) are enhanced, relative to the photosphere, by a factor of 4-5. By combining the SOHO and Ulysses results, ideas related to the origin of the slow speed solar wind are presented. Using spectroscopic measurements by the Solar Ultraviolet Measurement of Emitted Radiation (SUMER) instrument on SOHO the photospheric abundance of He was determined as 8.5 ± 1.3% (Y = 0.248). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Helioseismology is practically the only efficient experimental way of probing the solar interior. Without it, the results of theoretical solar models would remain untested and, consequently, less reliable when applying them for investigating remote stars. Hence, having a firm understanding of the applicability and reliability of helioseismology and the awareness of its limits are essential in solar physics and also in astrophysics. One of the weaknesses of the currently popular helioseismic models is that they allow only limited interaction between the global acoustic oscillation modes and the magnetic lower solar atmosphere, although, observations confirm strong coupling of helioseismic oscillations to the atmospheric magnetic field. The present article overviews the attempts of taking into account atmospheric magnetic effects in the theoretical models of global solar oscillations.  相似文献   

18.
The response of the lower and middle atmosphere to variations in solar irradiance typical of those observed to take place over the 11-year activity cycle has been investigated. The effects on radiative heating rates of changing total solar irradiance, solar spectral irradiance and two different assumptions concerning stratospheric ozone have been studied with a radiative transfer code. The response in the stratosphere depends on the changes specified in the ozone distribution which is not well known. A general circulation model (GCM) of the atmosphere up to 0.1 mbar (about 65 km) has been used to study the impacts of these changes on the thermodynamical structure. The results in the troposphere are very similar to those reported by Haigh99 using a quite different GCM. In the middle atmosphere the model is able to reproduce quite well the observed seasonal evolution of temperature and wind anomalies. Calculations of radiative forcing due to solar variation are presented. These show that the thermal infrared component of the forcing, due to warming of the stratosphere, is important but suggest a near balance between the longwave and shortwave effects of the increased ozone so that ozone change may not be important for net radiative forcing. However, the structure of the ozone change does affect the detailed temperature response and the spectral composition of the radiation entering the troposphere.  相似文献   

19.
Feldman  U.  Widing  K.G. 《Space Science Reviews》2003,107(3-4):665-720
The composition of the solar photosphere is believed to be uniform. Indeed a quantity that does not vary with solar surface location or with a particular solar feature, i.e., no observational evidence is available to indicate that the photospheric composition near the solar equator is different from the photospheric composition near the solar poles or that the photospheric composition in quiet regions is different from the composition in active regions. In contrast, the composition of the solar upper atmosphere is not well defined. Solar composition work in recent decades has brought the recognition that there are systematic differences between the composition of the corona and the photosphere and revealed evidence for spatial and time variability in the composition of various coronal features. We review the spectroscopic techniques used and the progress that was made in recent years in deriving the plasma compositions of various solar upper atmosphere structures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
D. J. Wu 《Space Science Reviews》2005,121(1-4):333-342
Nonthermal electrons play a major role during solar flares since not only they contain a large amount of the released energy but also they provide important information of the flaring physics through their nonthermal radiation in radio and hard X-ray bands. In a recent work Wu (Phys. Plasmas 10 (2003) 1364) proposed that dissipative solitary kinetic Alfvén wave (DSKAW) with a local shock-like structure could provide an efficient acceleration mechanism for energetic electrons in a low-β plasma. In the present paper dynamical characteristics of the DSKAW acceleration mechanism in solar coronal plasmas are studied and its application to the acceleration of flaring electrons is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号