首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Garrard  T.L.  Davis  A.J.  Hammond  J.S.  Sears  S.R. 《Space Science Reviews》1998,86(1-4):649-663
The Advanced Composition Explorer (ACE) mission is supported by the ACE Science Center for the purposes of processing and distributing ACE data, and facilitating collaborative work on the data by instrument investigators and by the space physics community at large. The Science Center will strive to ensure that the data are properly archived and easily available. In particular, it is intended that use of a centralized science facility will guarantee appropriate use of data formatting standards, thus easing access to the data, will improve communications within and to the ACE science working team, and will reduce redundant effort in data processing. Secondary functions performed by the Science Center include acting as an interface between the scientists and the mission operations team. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The OSIRIS-REx mission will conduct a Radio Science investigation of the asteroid Bennu with a primary goal of estimating the mass and gravity field of the asteroid. The spacecraft will conduct proximity operations around Bennu for over 1 year, during which time radiometric tracking data, optical landmark tracking images, and altimetry data will be obtained that can be used to make these estimates. Most significantly, the main Radio Science experiment will be a 9-day arc of quiescent operations in a 1-km nominally circular terminator orbit. The pristine data from this arc will allow the Radio Science team to determine the significant components of the gravity field up to the fourth spherical harmonic degree. The Radio Science team will also be responsible for estimating the surface accelerations, surface slopes, constraints on the internal density distribution of Bennu, the rotational state of Bennu to confirm YORP estimates, and the ephemeris of Bennu that incorporates a detailed model of the Yarkovsky effect.  相似文献   

3.
The MESSENGER Science Operations Center (SOC) is an integrated set of subsystems and personnel whose purpose is to obtain, provide, and preserve the scientific measurements and analysis that fulfill the objectives of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. The SOC has two main functional areas. The first is to facilitate science instrument planning and operational activities, including related spacecraft guidance and control operations, and to work closely with the Mission Operations Center to implement those plans. The second functional area, data management and analysis, involves the receipt of science-related telemetry, reformatting and cataloging this telemetry and related ancillary information, retaining the science data for use by the MESSENGER Science Team, and preparing data archives for delivery to the Planetary Data System; and the provision of operational assistance to the instrument and science teams in executing their algorithms and generating higher-level data products.  相似文献   

4.
THEMIS—a five-spacecraft constellation to study magnetospheric events leading to auroral outbursts—launched on February 17, 2007. All aspects of operations are conducted at the Mission Operations Center at the University of California at Berkeley. Activities of the multi-mission operations team include mission and science operations, flight dynamics and ground station operations. Communications with the constellation are primarily established via the Berkeley Ground Station, while NASA’s Ground Network provides secondary pass coverage. In addition, NASA’s Space Network supports maneuver operations near perigee. Following a successful launch campaign, the operations team performed on-orbit probe bus and instrument check-out and commissioning tasks, and placed the constellation initially into a coast phase orbit configuration to control orbit dispersion and conduct initial science operations during the summer of 2007. Mission orbit placement was completed in the fall of 2007, in time for the first winter observing season in the Earth’s magnetospheric tail. Over the course of the first 18 months of on-orbit constellation operations, procedures for instrument configuration, science data acquisition and navigation were refined, and software systems were enhanced. Overall, the implemented ground systems at the Mission Operations Center proved to be very successful and completely adequate to support reliable and efficient constellation operations. A high degree of systems automation is employed to support lights-out operations during off-hours.  相似文献   

5.
ESA’s Rosetta mission was launched in March 2004 and is on its way to comet 67P/Churyumov-Gerasimenko, where it is scheduled to arrive in summer 2014. It comprises a payload of 12 scientific instruments and a Lander. All instruments are provided by Principal Investigators, which are responsible for their operations. As for most ESA science missions, the ground segment of the mission consists of a Mission Operations Centre (MOC) and a Science Operations Centre (SOC). While the MOC is responsible for all spacecraft-related aspects and the final uplink of all command timelines to the spacecraft, the scientific operations of the instruments and the collection of the data and ingestion into the Planetary Science Archive are coordinated by the SOC. This paper focuses on the tasks of the SOC and in particular on the methodology and constraints to convert the scientific goals of the Rosetta mission to operational timelines.  相似文献   

6.
The ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS), comprised of payload Instrument Team, ESA and Russian operational centres, is responsible for planning the science operations of the TGO mission and for the generation and archiving of the scientific data products to levels meeting the scientific aims and criteria specified by the ESA Project Scientist as advised by the Science Working Team (SWT). The ExoMars SGS builds extensively upon tools and experience acquired through earlier ESA planetary missions like Mars and Venus Express, and Rosetta, but also is breaking ground in various respects toward the science operations of future missions like BepiColombo or JUICE. A productive interaction with the Russian partners in the mission facilitates broad and effective collaboration. This paper describes the global organisation and operation of the SGS, with reference to its principal systems, interfaces and operational processes.  相似文献   

7.
The James Webb Space Telescope (JWST) project at the NASA, Goddard Space Flight Center (GSFC) is responsible for the development, launch, flight, and science operations for the telescope. The project is in phase B with its launch scheduled for no earlier than June 2013. The project is a partnership among NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The JWST mission team is fully in place, including major ESA and CSA subcontractors. This provides an overview of the planned JWST science, current architecture focusing on the instrumentation, and mission status, including technology developments, and risks.  相似文献   

8.
The Interstellar Boundary Explorer (IBEX) Science Operations Center is responsible for supporting analysis of IBEX data, generating special payload command procedures, delivering the IBEX data products, and building the global heliospheric maps of energetic neutral atoms (ENAs) in collaboration with the IBEX team. We describe here the data products and flow, the sensor responses to ENA fluxes, the heliospheric transmission of ENAs (from 100 AU to 1 AU), and the process of building global maps of the heliosphere. The vast majority of IBEX Science Operations Center (ISOC) tools are complete, and the ISOC is in a remarkable state of readiness due to extensive reviews, tests, rehearsals, long hours, and support from the payload teams. The software has been designed specifically to support considerable flexibility in the process of building global flux maps. Therefore, as we discover the fundamental properties of the interstellar interaction, the ISOC will iteratively improve its pipeline software, and, subsequently, the heliospheric flux maps that will provide a keystone for our global understanding of the solar wind’s interaction with the interstellar medium. The ISOC looks forward to the next chapter of the IBEX mission, as the tools we have developed will be used in partnership with the IBEX team and the scientific community over the coming years to define our global understanding of the solar wind’s interaction with the local interstellar medium.  相似文献   

9.
Rosetta Ground Segment and Mission Operations   总被引:1,自引:0,他引:1  
At the European Space Operations Centre in Darmstadt (Germany) the activities for ground segment development and mission operations preparation for Rosetta started in 1997. Many of the characteristics of this mission were new to ESOC and have therefore required an early effort in identifying all the necessary facilities and functions. The ground segment required entirely new elements to be developed, such as the large deep-space antenna built in New Norcia (Western Australia). The long duration of the journey to the comet, of about 10 years, required an effort in the operations concept definition to reduce the cost of routine monitoring and control. The new approaches adopted for the Rosetta mission include full transfer of on-board software maintenance responsibility to the operations team, and the installation of a fully functioning spacecraft engineering model at ESOC, in support of testing and troubleshooting activities in flight, but also for training of the operations staff. Special measures have also been taken to minimise the ground contact with the spacecraft during cruise, to reduce cost, down to a typical frequency of one contact per week. The problem of maintaining knowledge and expertise in the long flight to comet Churyumov–Gerasimenko is also a major challenge for the Rosetta operations team, which has been tackled early in the mission preparation phase and evolved with the first years of flight experience.  相似文献   

10.
Burley  R.J.  Green  J.L.  Coyle  S.E. 《Space Science Reviews》2000,91(1-2):483-496
The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) will produce forefront science by quantifying the response of the magnetosphere to the time variable solar wind. It will acquire, for the first time, a variety of three-dimensional images of magnetospheric boundaries and plasma distributions extending from the magnetopause to the inner plasmasphere. The images will be produced on time scales needed to answer important questions about the interactions of the solar wind and the magnetosphere. The IMAGE team will provide open access to all IMAGE data. Thus there will be no proprietary rights or periods. All IMAGE data products will be archived and available to the scientific research community. The IMAGE mission will operate with a near 100% duty cycle with all instruments in their baseline operational modes. A Science and Mission Operations Control Center or SMOC has been developed at the NASA Goddard Space Flight Center (GSFC) to be the main data and command processing system for IMAGE. The IMAGE Level-0 data will be processed into Level 0.5 and Level-1 data and browse products within 24 hours after their receipt of raw data in the SMOC. These data products will be transferred to the NSSDC, for long-term archiving, and posted immediately on the world-wide-web for use by the international scientific community and the public.  相似文献   

11.
Vitally important to the success of any mission is the ground support system used for commanding the spacecraft, receiving the telemetry, and processing the results. We describe the ground system used for the STEREO mission, consisting of the Mission Operations Center, the individual Payload Operations Centers for each instrument, and the STEREO Science Center, together with mission support from the Flight Dynamics Facility, Deep Space Mission System, and the Space Environment Center. The mission planning process is described, as is the data flow from spacecraft telemetry to processed science data to long-term archive. We describe the online resources that researchers will be able to use to access STEREO planning resources, science data, and analysis software. The STEREO Joint Observations Program system is described, with instructions on how observers can participate. Finally, we describe the near-real-time processing of the “space weather beacon” telemetry, which is a low telemetry rate quicklook product available close to 24 hours a day, with the intended use of space weather forecasting.  相似文献   

12.
The Dawn mission??s Education and Public Outreach (E/PO) program takes advantage of the length of the mission, an effort to maintain level funding, and the exceptional support of the science and engineering teams to create formal and informal educational materials that bring STEM content and modes of thinking to students of all ages. With materials that are based on researched pedagogical principles and aligned with science education standards, Dawn weaves together many aspects of the mission to engage students, teachers, and the general public. E/PO tells the story of the discovery of the asteroid belt, uncovers principles of physics behind the ion propulsion that powers the spacecraft, and explains what we can learn from the instrumentation and how the mission??s results will expand our understanding of the origins of the solar system. In this way, we not only educate and inform, we build anticipation and expectation in the general public for the spacecraft??s arrival at Vesta in 2011 and three years later at Ceres. This chapter discusses the organization, strategies, formative assessment and dissemination of these materials and activities, and includes a section on lessons learned.  相似文献   

13.
The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected.  相似文献   

14.
The Cluster ground segment design and mission operations concept have been defined according to the basic mission requirements, namely, to allow the transfer of the four spacecraft from the initial geostationary transfer orbit achieved at separation from the launcher into the final highly elliptical polar orbits, such that in the areas of scientific interest along their orbits, the four spacecraft will form a tetrahedral configuration with pre-defined separation distances, to be changed every six months during the mission. The Cluster mission operations will be carried out by ESA from its European Space Operations Centre; the task of merging the Principal Investigators' requests into coordinated, regular scientific mission planning inputs to ESOC will be undertaken by the Joint Science Operations Centre. The mission products will be distributed to the scientific community regularly in form of CD-ROMs. Principal Investigators will also have access to quick-look science, housekeeping telemetry and auxiliary data via an electronic network.  相似文献   

15.
The Dawn spacecraft is designed to travel to and operate in orbit around the two largest main belt asteroids, Vesta and Ceres. Developed to meet a ten-year life and fully redundant, the spacecraft accommodates an ion propulsion system, including three ion engines and xenon propellant tank, utilizes large solar arrays to power the engines, carries the science instrument payload, and hosts the hardware and software required to successfully collect and transmit the scientific data back to Earth. The launch of the Dawn spacecraft in September 2007 from Cape Canaveral Air Force Station was the culmination of nearly five years of design, development, integration and testing of this unique system, one of the very few scientific spacecraft to rely on ion propulsion. The Dawn spacecraft arrived at its first destination, Vesta, in July 2011, where it will conduct science operations for twelve months before departing for Ceres.  相似文献   

16.
The International Solar-Terrestrial Physics (ISTP) program will provide simultaneous coordinated scientific measurements from most of the major areas of geospace including specific locations on the Earth's surface. This paper describes the comprehensive ISTP ground science data handling system which has been developed to promote optimal mission planning and efficient data processing, analysis and distribution. The essential components of this ground system are the ISTP Central Data Handling Facility (CDHF), the Information Processing Division's Data Distribution Facility (DDF), the ISTP/Global Geospace Science (GGS) Science Planning and Operations Facility (SPOF) and the NASA Data Archive and Distribution Service (NDADS).The ISTP CDHF is the one place in the program where measurements from this wide variety of geospace and ground-based instrumentation and theoretical studies are brought together. Subsequently, these data will be distributed, along with ancillary data, in a unified fashion to the ISTP Principal Investigator (PI) and Co-Investigator (CoI) teams for analysis on their local systems. The CDHF ingests the telemetry streams, orbit, attitude, and command history from the GEOTAIL, WIND, POLAR, SOHO, and IMP-8 Spacecraft; computes summary data sets, called Key Parameters (KPs), for each scientific instrument; ingests pre-computed KPs from other spacecraft and ground basel investigations; provides a computational platform for parameterized modeling; and provides a number of data services for the ISTP community of investigators. The DDF organizes the KPs, decommutated telemetry, and associated ancillary data into products for duistribution to the ISTP community on CD-ROMs. The SPOF is the component of the GGS program responsible for the development and coordination of ISTP science planning operations. The SPOF operates under the direction of the ISTP Project Scientist and is responsible for the development and coordination of the science plan for ISTP spacecraft. Instrument command requests for the WIND and POLAR investigations are submitted by the PIs to the SPOF where they are checked for science conflicts, forwarded to the GSFC Command Management Syntem/Payload Operations Control Center (CMS/POCC) for engineering conflict validation, and finally incorporated into the conflict-free science operations plan. Conflict resolution is accomplished through iteration between the PIs, SPOF and CMS and in consultation with the Project Scientist when necessary. The long term archival of ISTP KP and level-zero data will be undertaken by NASA's National Space Science Data Center using the NASA Data Archive and Distribution Service (NDADS). This on-line archive facility will provide rapid access to archived KPs and event data and includes security features to restrict access to the data during the time they are proprietary.  相似文献   

17.
Dawn??s ion propulsion system (IPS) is the most advanced propulsion system ever built for a deep-space mission. Aside from the Mars gravity assist it provides all of the post-launch ??V required for the mission including the heliocentric transfer to Vesta, orbit capture at Vesta, transfer to various Vesta science orbits, escape from Vesta, the heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to the different Ceres science orbits. The ion propulsion system provides a total ??V of nearly 11 km/s, comparable to the ??V provided by the 3-stage launch vehicle, and a total impulse of 1.2×107 N?s.  相似文献   

18.
THEMIS, NASA’s fifth Medium Class Explorer (MIDEX) mission will monitor the onset and macro-scale evolution of magnetospheric substorms. It is a fleet of 5 small satellites (probes) measuring in situ the magnetospheric particles and fields while a network of 20 ground based observatories (GBOs) monitor auroral brightening over Northern America. Three inner probes (~1 day period, 10 RE apogee) monitor current disruption and two outer probes (~2 day and ~4 day period, 20 RE and 30 RE apogees respectively) monitor lobe flux dissipation. In order to time and localize substorm onsets, THEMIS utilizes Sun–Earth aligned conjunctions between the probes when the ground-based observatories are on the nightside. To maintain high recurrence of conjunctions the outer orbits have to be actively adjusted during each observation season. Orbit maintenance is required to rearrange the inner probes for dayside observations and also inject the probes into their science orbits after near-simultaneous release from a common launch vehicle. We present an overview of the orbit strategy, which is primarily driven by the scientific goals of the mission but also represents a compromise between the probe thermal constraints and fuel capabilities. We outline the process of orbit design, describe the mission profile and explain how mission requirements are targeted and evaluated. Mission-specific tools, based on high-fidelity orbit prediction and common magnetospheric models, are also presented. The planning results have been verified by in-flight data from launch through the end of the first primary science seasons and have been used for mission adjustments subject to the early scientific results from the coast phase and first tail season.  相似文献   

19.
Selection of the Mars Science Laboratory Landing Site   总被引:1,自引:0,他引:1  
The selection of Gale crater as the Mars Science Laboratory landing site took over five years, involved broad participation of the science community via five open workshops, and narrowed an initial >50 sites (25 by 20?km) to four finalists (Eberswalde, Gale, Holden and Mawrth) based on science and safety. Engineering constraints important to the selection included: (1)?latitude (±30°) for thermal management of the rover and instruments, (2)?elevation (<?1?km) for sufficient atmosphere to slow the spacecraft, (3)?relief of <100–130?m at baselines of 1–1000?m for control authority and sufficient fuel during powered descent, (4)?slopes of <30° at baselines of 2–5?m for rover stability at touchdown, (5)?moderate rock abundance to avoid impacting the belly pan during touchdown, and (6)?a?radar-reflective, load-bearing, and trafficable surface that is safe for landing and roving and not dominated by fine-grained dust. Science criteria important for the selection include the ability to assess past habitable environments, which include diversity, context, and biosignature (including organics) preservation. Sites were evaluated in detail using targeted data from instruments on all active orbiters, and especially Mars Reconnaissance Orbiter. All of the final four sites have layered sedimentary rocks with spectral evidence for phyllosilicates that clearly address the science objectives of the mission. Sophisticated entry, descent and landing simulations that include detailed information on all of the engineering constraints indicate all of the final four sites are safe for landing. Evaluation of the traversabilty of the landing sites and target “go to” areas outside of the ellipse using slope and material properties information indicates that all are trafficable and “go to” sites can be accessed within the lifetime of the mission. In the final selection, Gale crater was favored over Eberswalde based on its greater diversity and potential habitability.  相似文献   

20.
The Juno Gravity Science Instrument   总被引:1,自引:0,他引:1  
The Juno mission’s primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter’s gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA’s Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (\(\sim 8\) GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (\(\sim 32\) GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号