首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prominence seismology is a rapidly developing topic which seeks to infer the internal structure and properties of solar prominences from the study of its oscillations. An extensive observational background about oscillations in quiescent solar prominences has been gathered during the last 70 years. These observations point out the existence of two different types of oscillations: Flare-induced oscillations (winking filaments) which affect the whole prominence and are of large amplitude and small amplitude oscillations which seem to be of local nature. From the theoretical point of view, few models have been set up to explain the phenomenon of winking filaments while, on the contrary, for small amplitude oscillations a large number of models trying to explain the observed features have been proposed.  相似文献   

2.
The equation of state is one of the three fundamental ingredients used to construct stellar models. The plasma of the interiors of stars such as the Sun is only slightly non-ideal. However, the extraordinary accuracy of the helioseismological data requires refined equations of state. It turned out to be necessary to include a Coulomb correction, commonly evaluated in the Debye-Hückel approximation. Higher-order non-ideal effects have implications as well, both for plasma physics and for solar physics. As a typical example, the recently studied thermodynamic consequence of excited states in compound particles is discussed. This effect is of considerable relevance in the helioseismic determination of the helium abundance in the solar convection zone. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
4.
Almost all theoretical and numerical models for the modulation of cosmic ray in the heliosphere are based on Parker's transport equation which contains all the important basic physical processes. The relative importance of the various mechanisms is however not established and may vary significantly over 22 years. The simultaneous measurements of solar wind parameters, heliospheric magnetic field properties and cosmic rays over a wide range of energies and positions in the heliosphere have brought the realization that modulation is much more complicated than what the original drift models predicted. In the process the sophistication of models based on solving Parker's equation has increased by orders of magnitude. A short review of the global modulation of cosmic rays is given from a theoretical and modelling point of view.  相似文献   

5.
On 14 July 1998 TRACE observed transverse oscillations of a coronal loop generated by an external disturbance most probably caused by a solar flare. These oscillations were interpreted as standing fast kink waves in a magnetic flux tube. Firstly, in this review we embark on the discussion of the theory of waves and oscillations in a homogeneous straight magnetic cylinder with the particular emphasis on fast kink waves. Next, we consider the effects of stratification, loop expansion, loop curvature, non-circular cross-section, loop shape and magnetic twist. An important property of observed transverse coronal loop oscillations is their fast damping. We briefly review the different mechanisms suggested for explaining the rapid damping phenomenon. After that we concentrate on damping due to resonant absorption. We describe the latest analytical results obtained with the use of thin transition layer approximation, and then compare these results with numerical findings obtained for arbitrary density variation inside the flux tube. Very often collective oscillations of an array of coronal magnetic loops are observed. It is natural to start studying this phenomenon from the system of two coronal loops. We describe very recent analytical and numerical results of studying collective oscillations of two parallel homogeneous coronal loops. The implication of the theoretical results for coronal seismology is briefly discussed. We describe the estimates of magnetic field magnitude obtained from the observed fundamental frequency of oscillations, and the estimates of the coronal scale height obtained using the simultaneous observations of the fundamental frequency and the frequency of the first overtone of kink oscillations. In the last part of the review we summarise the most outstanding and acute problems in the theory of the coronal loop transverse oscillations.  相似文献   

6.
Yihua Yan 《Space Science Reviews》2005,121(1-4):213-221
The coronal magnetic field configuration is important for understanding the energy storage and release processes that account for flares and/or CMEs. Here we present a model which is based on the work for potential magnetic field problems that only applies the condition at infinity with the boundary condition on the solar surface specified. We also discuss some recent progress on general force-free field models. For some event analyses, we have employed MDI/SOHO longitudinal magnetogram insected into the synoptic magnetogram to obtain whole boundary condition over the solar surface. Globally, the extrapolated global magnetic field structures effectively demonstrate the case for the disk signature of the radio CMEs and the evolution of the radio sources during the CME/flare processes.  相似文献   

7.
Outwardly propagating intensity disturbances are a common feature in large, quiescent coronal loop structures. In this paper, an overview is given of the observed properties and the theoretical modelling. As a large number of events have been observed and analysed, good statistical results on the estimated parameters have now been obtained. The theoretical modelling mainly focuses on two distinct aspects, namely the observed rapid damping of the perturbations, thought to be due to thermal conduction and the origin of the driver. Leakage of the solar surface p-modes is the main candidate to explain the observed periodicity, due to the strong correlation between loop position and period and the filamentary nature of the observed coronal intensity perturbations. Recent observational results appear to confirm the leakage and subsequent upward propagation of the solar surface 5 minute oscillations into the overlying atmospheric layers.  相似文献   

8.
Recent high temporal and spatial resolution satellite observations of the solar corona provide ample evidence of oscillations in coronal structures. The observed waves and oscillations can be used as a diagnostic tool of the poorly known coronal parameters, such as magnetic field, density, and temperature. The emerging field of coronal seismology relies on the interpretation of the various coronal oscillations in terms of theoretically known wave modes, and the comparison of observed and theoretical wave mode properties for the determination of the coronal parameters. However, due to complexity of coronal structures the various modes are coupled, and the application of linear theory of idealized structures to coronal loops and active regions limits the usefulness of such methods. Improved coronal seismology can be achieved by the development of full 3D MHD dynamical model of relevant coronal structures and the oscillation phenomena. In addition to improved accuracy compared to linear analysis, 3D MHD models allow the diagnostic method to include nonlinearity, compressibility, and dissipation. The current progress made with 3D MHD models of waves in the corona is reviewed, and the challenges facing further development of this method are discussed in the perspective of future improvement that will be driven by new high resolution and high cadence satellite data, such as received from Hinode and STEREO, and expected from SDO.  相似文献   

9.
Helioseismology uses solar p-mode oscillations to probe the structure of the solar interior. The modifications of p-mode properties due to the presence of solar magnetic fields provide information on the magnetic fields in the solar interior. Here we review some of results in helioseismology on the magnetic fields in the solar convection zone. We will also discuss a recent result on the magnetic fields at the base of the convection zone. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
New methods of local helioseismology and uninterrupted time series of solar oscillation data from the Solar and Heliospheric Observatory (SOHO) have led to a major advance in our understanding of the structure and dynamics of active regions in the subsurface layers. The initial results show that large active regions are formed by repeated magnetic flux emergence from the deep interior, and that their roots are at least 50 Mm deep. The active regions change the temperature structure and flow dynamics of the upper convection zone, forming large circulation cells of converging flows. The helioseismic observations also indicate that the processes of magnetic energy release, flares and coronal mass ejections, might be associated with strong (1–2 km/s) shearing flows, 4–6 Mm below the surface.  相似文献   

11.
Since their discovery, spicules have attracted increased attention as energy/mass bridges between the dense and dynamic photosphere and the tenuous hot solar corona. Mechanical energy of photospheric random and coherent motions can be guided by magnetic field lines, spanning from the interior to the upper parts of the solar atmosphere, in the form of waves and oscillations. Since spicules are one of the most pronounced features of the chromosphere, the energy transport they participate in can be traced by the observations of their oscillatory motions. Oscillations in spicules have been observed for a long time. However the recent high-resolution and high-cadence space and ground based facilities with superb spatial, temporal and spectral capacities brought new aspects in the research of spicule dynamics. Here we review the progress made in imaging and spectroscopic observations of waves and oscillations in spicules. The observations are accompanied by a discussion on theoretical modelling and interpretations of these oscillations. Finally, we embark on the recent developments made on the presence and role of Alfvén and kink waves in spicules. We also address the extensive debate made on the Alfvén versus kink waves in the context of the explanation of the observed transverse oscillations of spicule axes.  相似文献   

12.
Coronal holes are the coolest and darkest regions of the upper solar atmosphere, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. During the years of the solar minima, coronal holes are generally confined to the Sun??s polar regions, while at solar maxima they can also be found at lower latitudes. Waves, observed via remote sensing and detected in-situ in the wind streams, are most likely responsible for the wind and several theoretical models describe the role of MHD waves in the acceleration of the fast solar wind. This paper reviews the observational evidences of detection of propagating waves in these regions. The characteristics of the waves, like periodicities, amplitude, speed provide input parameters and also act as constraints on theoretical models of coronal heating and solar wind acceleration.  相似文献   

13.
A dependence of the polar cap magnetic flux on the interplanetary magnetic field and on the solar wind dynamic pressure is studied. The model calculations of the polar cap and auroral oval magnetic fluxes at the ionospheric level are presented. The obtained functions are based on the paraboloid magnetospheric model calculations. The scaling law for the polar cap diameter changing for different subsolar distances is demonstrated. Quiet conditions are used to compare theoretical results with the UV images of the Earth’s polar region obtained onboard the Polar and IMAGE spacecrafts. The model calculations enable finding not only the average polar cap magnetic flux but also the extreme values of the polar cap and auroral oval magnetic fluxes. These values can be attained in the course of the severe magnetic storm. Spectacular aurora often can be seen at midlatitude during severe magnetic storm. In particularly, the Bastille Day storm of July 15–16, 2000, was a severe magnetic storm when auroral displays were reported at midlatitudes. Enhancement of global magnetospheric current systems (ring current and tail current) and corresponding reconstruction of the magnetospheric structure is a reason for the equatorward displacement of the auroral zone. But at the start of the studied event the contracted polar cap and auroral oval were observed. In this case, the sudden solar wind pressure pulse was associated with a simultaneous northward IMF turning. Such IMF and solar wind pressure behavior is a cause of the observed aurora dynamics.  相似文献   

14.
Magnetic fields emerging from the Sun’s interior carry information about physical processes of magnetic field generation and transport in the convection zone. Soon after appearance on the solar surface the magnetic flux gets concentrated in sunspot regions and causes numerous active phenomena on the Sun. This paper discusses some properties of the emerging magnetic flux observed on the solar surface and in the interior. A statistical analysis of variations of the tilt angle of bipolar magnetic regions during the emergence shows that the systematic tilt with respect to the equator (the Joy’s law) is most likely established below the surface. However, no evidence of the dependence of the tilt angle on the amount of emerging magnetic flux, predicted by the rising magnetic flux rope theories, is found. Analysis of surface plasma flows in a large emerging active region reveals strong localized upflows and downflows at the initial phase of emergence but finds no evidence for large-scale flows indicating future appearance a large-scale magnetic structure. Local helioseismology provides important tools for mapping perturbations of the wave speed and mass flows below the surface. Initial results from SOHO/MDI and GONG reveal strong diverging flows during the flux emergence, and also localized converging flows around stable sunspots. The wave speed images obtained during the process of formation of a large active region, NOAA 10488, indicate that the magnetic flux gets concentrated in strong field structures just below the surface. Further studies of magnetic flux emergence require systematic helioseismic observations from the ground and space, and realistic MHD simulations of the subsurface dynamics.  相似文献   

15.
A review of the theoretical problems associated with preflare magnetic energy storage and conversion is presented. The review consists of three parts; preflare magnetic energy storage, magnetic energy conversion mechanisms, and preflare triggers. In Section 2, the relationship between magnetic energy storage and the electrodynamic coupling of the solar atmosphere is developed. By accounting for the electrodynamic coupling of the solar atmosphere, we are able to examine the fundamental problems associated with the concept of in situ versus remote magnetic-energy storage. Furthermore, this approach permits us to distinguish between the roles of local and global parameters in the storage process.Section 3 is focused on the conversion mechanisms that can explain, in principle, the rapid energy release of a flare. In addition, we discuss how electrodynamic coupling eventually dictates which mechanism(s) is responsible for releasing the stored magnetic energy, and how the global coupling dictates the final evolution of the relevant mechanism. Section 4 examines preflare triggers and Section 5, we examine the most promising directions for future research into the problem of magnetic-energy storage and conversion of the Sun.  相似文献   

16.
Quiescent prominences can be modeled as thin slabs of cold, dense plasma embedded in the much hotter and rarer solar corona. Although their global shape is rather irregular, they are often characterised by an internal structure consisting of a large number of thin, parallel threads piled together. Prominences often display periodic disturbances mostly observed in the Doppler displacement of spectral lines and with an amplitude typically of the order of or smaller than 2–3 km?s?1, a value which seems to be much smaller than the characteristic speeds of the prominence plasma (namely the Alfvén and sound velocities). Two particular features of these small amplitude prominence oscillations are that they seem to damp in a few periods and that they seem not to affect the whole prominence structure. In addition, in high spatial resolution observations, in which threads can be discerned, small amplitude oscillations appear to be clearly associated to these fine structure constituents. Prominence seismology tries to bring together the results from these observations (e.g. periods, wavelengths, damping times) and their theoretical modeling (by means of the magnetohydrodynamic theory) to gain insight into physical properties of prominences that cannot be derived from direct observation. In this paper we discuss works that have not been described in previous reviews, namely the first seismological application to solar prominences and theoretical advances on the attenuation of prominence oscillations.  相似文献   

17.
Ionospheric Storms — A Review   总被引:2,自引:0,他引:2  
Buonsanto  M.J. 《Space Science Reviews》1999,88(3-4):563-601
In this paper, our current understanding and recent advances in the study of ionospheric storms is reviewed, with emphasis on the F2-region. Ionospheric storms represent an extreme form of space weather with important effects on ground- and space-based technological systems. These phenomena are driven by highly variable solar and magnetospheric energy inputs to the Earth's upper atmosphere, which continue to provide a major difficulty for attempts now being made to simulate the detailed storm response of the coupled neutral and ionized upper atmospheric constituents using increasingly sophisticated global first principle physical models. Several major programs for coordinated theoretical and experimental study of these storms are now underway. These are beginning to bear fruit in the form of improved physical understanding and prediction of ionospheric storm effects at high, middle, and low latitude. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
19.
Solar pulsations     
Recent observational evidence on solar oscillations is reviewed; this evidence strongly favors the global interpretation for much of the observed spectrum. Implications of these observations for the study of the solar interior and atmosphere are discussed.This work was supported in part by the National Science Foundation and the Air Force Office of Scientific Research.  相似文献   

20.
We present an overview of how the principal physical properties of magnetic flux which emerges from the toroidal fields in the tachocline through the turbulent convection zone to the solar surface are linked to solar activity events, emphasizing the effects of magnetic field evolution and interaction with other magnetic structures on the latter. We compare the results of different approaches using various magnetic observables to evaluate the probability of flare and coronal mass ejection (CME) activity and forecast eruptive activity on the short term (i.e. days). Then, after a brief overview of the observed properties of CMEs and their theoretical models, we discuss the ejecta properties and describe some typical magnetic and composition characteristics of magnetic clouds (MCs) and interplanetary CMEs (ICMEs). We review some individual examples to clarify the link between eruptions from the Sun and the properties of the resulting ejecta. The importance of a synthetic approach to solar and interplanetary magnetic fields and activity is emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号