首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ordered-statistics (OS) constant false-alarm rate (CFAR) is relatively immune to the presence of interfering targets among the reference cells used to determine the average background. OS CFAR performance in a multitarget environment was previously studied by simulation. The author obtains analytic expressions for the added detection loss, assuming strong interfering targets. The real target is assumed to be a Rayleigh fluctuating target. Numerical examples are included  相似文献   

2.
This paper is devoted to the detection performance evaluation of the mean-level (ML) constant false-alarm rate (CFAR) detectors processing M-correlated sweeps in the presence of interfering targets. The consecutive pulses are assumed to be fluctuating according to the Swerling I model. Exact expressions are derived for the detection probability of the conventional mean-level detector (MLD) and its modified versions under Rayleigh fluctuating target model. Performance for independent sweeps can be easily obtained by setting the sweep-to-sweep correlation coefficient equal to zero. Results are obtained for both homogeneous and nonhomogeneous background environments. It is shown that for fixed M, the relative improvement over the single sweep case increases as the correlation between sweeps decreases. For the same parameter values, the minimum MLD has the best performance in the presence of extraneous target returns among the reference noise samples  相似文献   

3.
Under the assumption that the average noise power may vary from cell to cell, new, more easily computed expressions are given for the probability of detecting a fluctuating target by means of a cell-averaging CFAR test. The generalized chi-square family of fluctuating targets is considered with the Swerling I and III models given as special cases.  相似文献   

4.
Optimal CFAR detection in Weibull clutter   总被引:2,自引:0,他引:2  
Optimal, in the maximum likelihood sense, constant false-alarm rate (CFAR) detection for Weibull clutter statistics, is investigated. The proposed OW (optimal Weibull) estimator is proved to be an asymptotically efficient estimator of the mean power of the Weibull clutter. Theoretical analysis of the OW-CFAR detector is provided, while detection performance analysis is carried out using the Monte Carlo simulation method. The operation of the median and morphological (MEMO)-CFAR detector in Weibull clutter statistics is also explained. It performs almost optimally in uniform clutter and, simultaneously, it is robust in multitarget situations. The performance of the proposed OW-CFAR detector in uniformal Weibull clutter is used as a yardstick in the analysis of the MEMO cell-averager (CA) and ordered statistic (OS) CFAR detectors. Nonfluctuating and fluctuating (Swerling II) targets are considered in detection analysis. The performance of the detectors is also examined at clutter edges  相似文献   

5.
Nonparametric Radar Extraction Using a Generalized Sign Test   总被引:3,自引:0,他引:3  
A nonparametric procedure used in a constant false alarm rate (CFAR) radar extractor for detecting targets in a background of noise with unknown statistical properties is described. The detector is based on a generalization of the well-known two-sample sign test and thus requires a set of reference noise observations in addition to the set of observations being tested for signal presence. The detection performance against Gaussian noise is determined for a finite number of observations and asymptotically, for both nonfluctuating and pulse-to-pulse Rayleigh fluctuating target statistics. It is noted that the performance loss, as compared to the optimum parametric detector, depends critically on the number of reference noise observations available when the number of hits per target is not large. In the same case a much larger loss is also found for a pulse-to-pulse fluctuating target even though the asymptotic loss is the same as for a nonfluctuating target. A comparison is finally made with a detector based on the Mann-Whitney test, which usually is considered to be one of the better nonparametric procedures for the two-sample case.  相似文献   

6.
A constant false alarm rate (CFAR) detection method which is based on a combination of median and morphological filters (MEMO) is proposed. The MEMO algorithm has robust performance with small CFAR loss, very good behavior at clutter edges and high detection performance in the case of closely spaced narrowband signals (targets). The proposed MEMO method is favourably compared with cell averaging (CA) and ordered statistics (OS) CFAR detectors. The Monte Carlo method is employed to analyze the MEMO-CFAR detector  相似文献   

7.
In this paper, we investigate data quantization effects in constant false alarm rate (CFAR) signal detection. Exponential distribution for the input data and uniform quantization are assumed for the CFAR detector analysis. Such assumptions are valid in the case of radar for a Swerling I target in Gaussian clutter plus noise and a receiver with analog square-law detection followed by analog-to-digital (A/D) conversion. False alarm and detection probabilities of the cell averaging (CA) and order statistic (OS) CFAR detectors operating on quantized observations are analytically determined. In homogeneous backgrounds with 15 dB clutter power fluctuations, we show analytically that a 12-bit uniform quantizer is sufficient to achieve false alarm rate invariance. Detector performance characteristics in nonhomogeneous backgrounds, due to regions of clutter power transitions and multiple interfering targets, are also presented and detailed comparisons are given  相似文献   

8.
A previous analysis of order-statistics constant-false-alarm-rate (OS-CFAR) radar receiving a single pulse from a Rayleigh fluctuating target in a Rayleigh background is extended to a Rayleigh-plus-dominant target. The analysis includes effects of a multitarget environment. A detailed comparison of OS-CFAR, cell-averaging (CA) CFAR, and censored CA-CFAR is provided for a Rayleigh target in the presence of strongly interfering targets. The false-alarm analysis of OS-CFAR is extended to the more general case of a Weibull background. The deterioration of the CFAR property of OS as the shape factor, C, of a Weibull probability density function changes from Rayleigh (C=2) to a longer-tailed one (C<2) is evaluated. The analytic comparison between CA-CFAR and OS-CFAR is extended to an integration of pulses reflected from a Swerling II target. The OS-CFAR performance (with and without interfering targets) yields an integral equation that is solved numerically  相似文献   

9.
OS-CFAR theory for multiple targets and nonuniform clutter   总被引:1,自引:0,他引:1  
The performance of a cell averaging constant false-alarm rate (CA-CFAR) detector degrades rapidly in nonideal conditions caused by multiple targets and nonuniform clutter. The ordered-statistic CFAR (OS-CFAR) is an alternative to the CA-CFAR. The OS-CFAR trades a small loss in detection performance relative to the CA-CFAR in ideal conditions for much less performance degradation in nonideal conditions. A formula is given for the detection probability of the OS-CFAR when there are multiple Swerling I targets in the CFAR window, and a formula is given for the probability of false alarm in nonuniform Raleigh clutter  相似文献   

10.
The performance of distributed constant false alarm rate (CFAR) detection with data fusion both in homogeneous and nonhomogeneous Gaussian backgrounds is analyzed. The ordered statistics (OS) CFAR detectors are employed as local detectors. With a Swerling type I target model, in the homogeneous background, the global probability of detection for a given fixed global probability of false alarm is maximized by optimizing both the threshold multipliers and the order numbers of the local OS-CFAR detectors. In the nonhomogeneous background with multiple targets or clutter edges, the performance of the detection system is analyzed and its performance is compared with the performance of the distributed cell-averaging (CA) CFAR detection system  相似文献   

11.
Linearly combined order statistic (LCOS) constant false-alarm rate (CFAR) detectors are examined for efficient and robust threshold estimation applied to exponentially distributed background observations for improved detection. Two optimization philosophies have been employed to determine the weighting coefficients of the order statistics. The first method optimizes the coefficients to obtain efficient estimates of clutter referred to the censored maximum likelihood (CML) and best linear unbiased (BLU) CFAR detectors. The second optimization involves maximizing the probability of detection under Swerling II targets and is referred to as the most powerful linear (MPL) CFAR detector. The BLU-CFAR detector assumes no knowledge of the target distribution in contrast to the MPL-CFAR detector which requires partial knowledge of the target distribution. The design of these CFAR detectors and the probability of detection performance are mathematically analyzed for background observations having homogeneous and heterogeneous distributions wherein the trade-offs between robustness and detection performance are illustrated  相似文献   

12.
Detectability Loss Due to "Greatest Of" Selection in a Cell-Averaging CFAR   总被引:2,自引:0,他引:2  
Curves are presented showing the additional constant false-alarm rate (CFAR) loss which results when a "greatest of" logic is imple mented between the leading and lagging sets of reference cells. Thee analytical results for a square law detector and a Swerling case 1 fluctuating target are supplemented by simulation results for a nonfluctuating target, and envelope and logarithmic detector laws.  相似文献   

13.
We address the problem of detection of targets obscured by a forest canopy using an ultrawideband (UWB) radar. The forest clutter observed in the radar imagery is a highly impulsive random process that is more accurately modeled with the recently proposed class of alpha-stable processes as compared with Gaussian, Weibull, and K-distribution models. With this more accurate model, segmentation is performed on the imagery into forest and clear regions. Further, a region-adaptive symmetric alpha stable (SαS) constant false-alarm rate (CFAR) detector is introduced and its performance is compared with the Weibull and Gaussian CFAR detectors. The results on real data show that the SαS CFAR performs better than the Weibull and Gaussian CFAR detectors in detecting obscured targets  相似文献   

14.
非相干Rice杂波中的恒虚警检测   总被引:1,自引:0,他引:1  
 地杂波的统计特性常常可以用Rice模型来描述,其物理基础是认为地杂波由一些大的固定散射体引起的稳定分量和大量小的随机分布的运动散射体引起的瑞利起伏分量所合成。文献[2]研究了稳定分量不相干时Rice杂波中离散时间最佳检测的估值器——相关器结构,但无显式解,实现有困难。文献[3]导出了Rice杂波中SwerlingⅡ目标的离散时间检测的似然比检测器结构。在此基础上,本文给出了一种修正平方律结构的似然比检测器,并和通常的平方律检测器作了性能比较。  相似文献   

15.
文章提出了 1种基于双边截断的双参数海上风电站 SAR图像 CFAR检测器 DTCS-TPCFAR,目的是提高在具有多个目标海上区域和石油泄漏区域等环境下对海上风电站的检测性能。DTCS-TPCFAR所提出的双边截断杂波的方法,能够同时消除高强度和低强度异常值的干扰,同时保留真实的杂波样本。通过使用最大似然估计计算双边截断后样本的均值和标准差,然后通过这 2个参数估计值计算出截断阈值,最后再结合指定的虚警率(Probability of False Alarm,PFA)来对测试单元(Test Cell,TC)进行判断,完成最终的目标检测。这也是首次将 CFAR检测器用于检测海上风电站。文章通过 Sentinel-1数据集来验证该方法的有效性。实验结果表明,文章所提出的算法在相同指定虚警率下,具有更高的检测率(Detection Rate,DR)和更低的误报率(False Alarm Rate,FAR)。  相似文献   

16.
The detection performance of the maximum mean level detection (MX-MLD) when noncoherent integration is used under both nonfluctuating and chi-square fluctuating target models is analyzed. Finite series are obtained in all cases. Required thresholds and constant false-alarm rate loss curves are presented, with emphasis on the important Swerling case II model  相似文献   

17.
A Detection Algorithm for Optical Targets in Clutter   总被引:2,自引:0,他引:2  
There is active interest in the development of algorithms for detecting weak stationary optical and IR targets in a heavy opticalclutter background. Often only poor detectability of low signal-to-noise ratio (SNR) targets is achieved when the direct correlation method is used. In many cases, this is partly obviated by using detection with correlated reference scenes [1, 2].This paper uses the experimentally justified assumption that most optical clutter can be modeled as a whitened Gaussian randomprocess with a rapidly space-varying mean and a more slowlyvarying covariance [2]. With this assumption, a new constant falsealarm rate (CFAR) detector is developed as an application of the classical generalized maximum likelihood ratio test of Neyman and Pearson. The final CFAR test is a dimensionless ratio. This test exhibits the desirable property that its probability of a false alarm(PFA) is independent of the covariance matrix of the actual noiseencountered. When the underlying noise processes are complex intime, similar considerations can yield a sidelobe canceler CFARdetection criterion for radar and communications. Performance analyses based on the probability of detection (PD)versus signal-to-noise ratio for several given fixed false alarm probabilities are presented. Finally these performance curves are validated by computer simulations of the detection process which use real image data with artificially implanted signals.  相似文献   

18.
A new constant false alarm rate (CFAR) test termed signal-plus-order statistic CFAR (S+OS) using distributed sensors is developed. The sensor modeling assumes that the returns of the test cells of different sensors are all independent and identically distributed In the S+OS scheme, each sensor transmits its test sample and a designated order statistic of its surrounding observations to the fusion center. At the fusion center, the sum of the samples of the test cells is compared with a constant multiplied by a function of the order statistics. For a two-sensor network, the functions considered are the minimum of the order statistics (mOS) and the maximum of the order statistics (MOS). For detecting a Rayleigh fluctuating target in Gaussian noise, closed-form expressions for the false alarm and detection probabilities are obtained. The numerical results indicate that the performance of the MOS detector is very close to that of a centralized OS-CFAR and it performs considerably better than the OS-CFAR detector with the AND or the OR fusion rule. Extension to an N-sensor network is also considered, and general equations for the false alarm probabilities under homogeneous and nonhomogeneous background noise are presented.  相似文献   

19.
Analysis of CFAR processors in homogeneous background   总被引:1,自引:0,他引:1  
Five different constant false alarm rate (CFAR) radar processing schemes are considered and their performances analyzed in homogeneous and nonhomogeneous backgrounds, the latter specifically being the multiple target environment and regions of clutter transitions. The average detection threshold for each of the CFAR schemes was computed to measure and compare the detection performance in homogeneous noise background. The exponential noise model was used for clear and clutter backgrounds to get closed-form expressions. The processor types compared are: the cell-averaging CFAR, the `greatest of' CFAR, the `smallest of' CFAR, the ordered-statistics CFAR, and a modified ordered-statistics processor called the trimmed-mean CFAR  相似文献   

20.
The MAX family of constant-false-alarm-rate (CFAR) detectors is introduced as a generalization of the greatest of CFAR (GO-CFAR) or MX mean-level detector (MX-MLD). Members of the MAX family use local estimators based on order statistics and generate both a near-range and a far-range noise-level estimate. Local estimates are always combined through a maximum operation; this insures false-alarm control at clutter edges. At the same time, order-statistic-based estimators result in a high-resolution detector. A complete detection analysis is provided for SWII targets and a reference channel contaminated by large outliers. Results are presented for the MX censored MLD (MX-CMLD) operating in clutter. The MX order statistic detector (MX-OSD) based on only a single-order statistic per window, is analyzed, and curves showing the required threshold, CFAR loss, optimum censoring point, and signal-to-noise ratio (SNR) loss in the presence of outliers are given. Simulations are used to compare the dynamic responses of various MX-OSD detectors in a clutter and a multiple-target environment  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号