共查询到20条相似文献,搜索用时 15 毫秒
1.
Mostafa El-Alaoui Maha Ashour-Abdalla Jean Michel Bosqued Robert L. Richard 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(10):1630-1642
Recent Cluster observations have strongly supported the existence of meso-scale structure in the magnetotail current sheet. In our study, a magnetohydrodynamic simulation event study exhibited current sheet behavior comparable to that seen in the Cluster observations. Geotail and DoubleStar observations also show that the simulation is providing a realistic representation of the magnetosphere during the period of interest; that is, when the current sheet evidently becomes bifurcated. The magnetohydrodynamic simulation allows us to place the local observations into a global contest. It shows that the observations can be explained in terms of localized reconnection tailward of the Cluster location and the formation of a flux rope nearby. The simulation also features wave-like structure across the current sheet. 相似文献
2.
3.
Tung-Shin Hsu Robert L. McPherron 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Substorm onset timing is a critical issue in magnetotail dynamics research. Solar wind energy is accumulated in the magnetosphere and the configuration of the magnetosphere evolves toward an unstable state during the growth phase. At some point, the expansion phase begins and the stored energy is released through a variety of processes that return the magnetosphere to a lower energy state. In recovery the various processes die away. Unfortunately, the ground and magnetospheric signatures of onset, i.e. energy release, can be seen both in the growth phase prior to onset and in the expansion phase after onset. Some investigators refer to each of these events as a substorm. Tail observations suggest that most substorms have one event that differentiates the behavior of the tail field and plasma. We refer to this time as the “main substorm onset”. Each substorm associated phenomenon is timed independently and then compared with main substorm onsets. ISEE-2 tail observations are used to examine the tail lobe magnetic conditions associated with substorms because ISEE-2 orbit has a high inclination and frequently observes lobe field. Approximately 70 ∼ 75% of tail lobe Bt and Bz change are associated with the main substorm onset. If the satellite is more than 3 Re above (below) the neutral sheet, 86% (57%) of plasma pressure dropouts are associated with substorms. We interpret our results as evidence that the effect of the growth phase is to drive the magnetosphere towards instability. As it approaches global instability local regions become temporarily unstable but are rapidly quenched. Eventually one of these events develops into the global instability that releases most of the stored energy and returns the magnetosphere to a more stable configuration. 相似文献
4.
T. Mukai K. Ogasawara Y. Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(12):2166-2171
Since the flyby observations by Mariner 10 in 1974 and 1975, Mercury has been one of the most interesting objects for space physics and planetary exploration. The MESSENGER and BepiColombo missions now plan to revisit this planet. In order to design plasma instruments for the BepiColombo mission, we have estimated electron and ion fluxes around Mercury with an empirical model, which has been developed for the Earth’s magnetotail. The solar wind data needed as input parameters are derived from Helios observations. The result shows that our predicted electron fluxes at aphelion agree well with the Mariner-10 data. It is also noted that ion instruments must cover a very wide dynamic range of proton fluxes. However, the applicability of the Earth’s magnetospheric model to Mercury is, in itself, an important issue for comparative magnetospheric studies. 相似文献
5.
Y. Miyashita 《空间科学学报》2010,30(4):312-320
Magnetic reconnection is one of the most important, dynamic phenomena in the magnetotail in terms of magnetic field line configuration change and energy release. It is believed to occur in the distant magnetotail mainly during southward interplanetary magnetic field periods and in the near-Earth magnetotail in association with substorms. In the present paper, we discuss several important issues concerning magnetic reconnection in the magnetotail associated with substorms, such as reconnection signatures, location, timing, spatial scale, and behavior, from the macroscopic, observational point of view. 相似文献
6.
Both theory and simulation have played important roles in defining and illuminating the key mechanisms involved in substorms. Basic theories of magnetic reconnection and of interchange and ballooning instabilities were developed more than 50 years ago, and these plasma physical concepts have been central in discussions of substorm physics. A vast amount of research on reconnection, including both theoretical and computational studies, has helped provide a picture of how reconnection operates in the collisionless environment of the magnetosphere. Still, however, we do not fully understand how key microscale processes and large-scale dynamics work together to determine the location and rate of reconnection. While in the last twenty years, it has become clear that interchange processes are important for transporting plasma through the plasma sheet in the form of bursty bulk flows and substorm expansions, we still have not reached the point where simulations are able to realistically and defensibly represent all of the important aspects of the phenomenon. More than two decades ago it was suggested that the ballooning instability, the basic theory for which dates from the 1950s, may play an important role in substorms. Now the majority of experts agree that regions of the plasma sheet are often linearly unstable to ideal-MHD ballooning. However, it is also clear that kinetic effects introduce important modifications to the MHD stability criterion. It is still uncertain whether ballooning plays a leading role in substorms or has just a minor part. Among the different types of simulations that have been applied to the substorm problem, global MHD codes are unique in that, in a sense, they represent the entire global substorm phenomenon, including coupling to the solar wind and ionosphere, and the important mechanisms of reconnection, interchange, and ballooning. However, they have not yet progressed to the point where they can accurately represent the whole phenomenon, because grid-resolution problems limit the accuracy with which they can solve the equations of ideal MHD and the coupling to the ionosphere, and they cannot accurately represent small-scale processes that violate ideal MHD. 相似文献
7.
T. Takada R. Nakamura Y. Asano W. Baumjohann A. Runov M. Volwerk T.L. Zhang Z. Vörös K. Keika B. Klecker H. Rème E.A. Lucek C. Carr H.U. Frey 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(10):1585-1592
We examined two consecutive plasma sheet oscillation and dipolarization events observed by Cluster in the magnetotail, which are associated with a pseudo-breakup and a small substorm monitored by the IMAGE spacecraft. Energy input from the solar wind and an associated enhancement of the cross-tail current lead to current sheet thinning and plasma sheet oscillations of 3–5 min periods, while the pseudo-breakups occur during the loading phase within a spatially limited area, accompanied by a localized dipolarization observed by DSP TC1 or GOES 12. That is, the so-called “growth phase” is a preferable condition for both pseudo-breakup and plasma sheet oscillations in the near-Earth magnetotail. One of the plasma sheet oscillation events occurs before the pseudo-breakup, whereas the other takes place after pseudo-breakup. Thus there is no causal relationship between the plasma sheet oscillation events and pseudo-breakup. As for the contribution to the subsequent small substorm, the onset of the small substorm took place where the preceding plasma sheet oscillations can reach the region. 相似文献
8.
以2004年9月28日02:53:20 UT的亚暴为例, 通过TC-1在磁尾约12.5 Re 和Geotail卫星在近地磁尾等离子体片约8~9 Re的联合观测, 研究亚暴触发过程中近地磁尾等离子体片中等离子体波动特征. 结果表明, 亚暴触发区是近地磁尾中心等离子体片中较小的一个区域, 在亚暴触发区中低混杂不稳定性在近地磁尾等离子体片中存在, 准垂直传播的低混杂波发生在亚暴触发过程中, 而亚暴触发过程中近地磁尾等离子体片外边界区内的磁场偶极化信号和扰动都非常微弱. 在亚暴触发和亚暴膨胀相过程中出现了多次具有不同特征的磁场偶极化现象. 相似文献
9.
Colby L. Lemon T. Paul O’Brien 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1226-1233
We describe a tabular specification model of the density and temperature of ions and electrons at geosynchronous orbit as a function of magnetic local time and solar wind parameters. This model can be used to provide boundary conditions for numerical ring current models. Unlike previous specification models of geosynchronous plasma moments, this model is parameterized by upstream solar wind conditions. We find that solar wind parameters are a better predictor of geosynchronous ion density than magnetospheric indices, and as upstream parameters they are often more appropriate as model inputs since they causally precede the model outputs. Of the upstream parameters that were tested, the best predictors of geosynchronous conditions were the solar wind flow pressure and the magnitude and Z-component of the interplanetary magnetic field. 相似文献
10.
This paper, using the data of three Cluster satellites, compares the observations of Bursty Bulk Flow (BBF) by single satellite with those by multi satellites. The results indicate that there exists remarkable difference between observations of BBF by single satellite and multi satellites. The observations of BBF by a single satellite depend on its position relative to the flow channel. The difference is caused by the localization characteristics of fast flows in the plasma sheet, and can lead to diverging views about substorm and causal relations among substorm phenomena. 相似文献
11.
收集了Cluster卫星在2001-2005年间观测到的磁尾磁通量绳事件,并对磁通量绳(magnetic flux rope)形成及其内部磁场结构与行星际磁场(IMF)的关系作了统计研究.考虑磁通量绳被观测到时行星际磁场的条件,在所有73个磁通量绳事件中,行星际磁场By分量占有主导地位的事件有80%,且78%的事件具有与行星际磁场By分量相同方向的核心场.行星际磁场通过在磁层顶与地球磁场相互作用改变南北等离子体片内磁场相对方向,形成有利于磁通量绳形成的磁场位形,并且行星际磁场By分量的方向对磁通量绳内部核心场的方向具有决定性影响.从统计结果来看,磁通量绳的形成并不会依赖于行星际磁场Bz分量的方向. 相似文献
12.
In the past two years, much progress is made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS, RBSP, Swarm missions etc., or by computer simulations. This paper briefly reviews these works based on papers selected from the 191 publications from January 2014 to December 2015. The subjects cover various sub-branches of magnetospheric physics, including geomagnetic storm, magnetospheric substorm, magnetic reconnection, solar windmagnetosphere-ionosphere interaction, radiation belt, outer magnetosphere, magnetotail, plasmasphere, geomagnetic field, auroras and currents. 相似文献
13.
Y. Saito M.N. Nishino S. Yokota H. Tsunakawa M. Matsushima F. Takahashi H. Shibuya H. Shimizu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
In the Earth’s magnetotail, Japanese Moon orbiter Kaguya repeatedly encountered the plasmoid or plasma sheet. The encounters were characterized by the low energy ion signatures including lobe cold ions, cold ion acceleration in the plasma sheet-lobe boundaries, and hot plasma sheet ions or fast flowing ions associated with plasmoids. Different from the previous observations made in the magnetotail by the GEOTAIL spacecraft, the ions were affected by the existence of the Moon. On the dayside of the Moon, tailward flowing cold ions and their acceleration were observed. However, on the night side, tailward flowing cold ions could not be observed since the Moon blocked them. In stead, ion acceleration by the spacecraft potential and the electron beam accelerated by the potential difference between lunar surface and spacecraft were simultaneously observed. These electron and ion data enabled us to determine the night side lunar surface potential and spacecraft potential only from the observed data for the first time. 相似文献
14.
利用THEMIS卫星观测结果,分析2008年3月13日10:40UT-12:10UT的一次中等亚暴事件在磁尾的全球演化过程.在该过程中,THEMIS的5颗卫星在午夜区附近沿x轴依次排列,离地心距离约8.7~13.2Re.亚暴触发开始后,磁场偶极化和等离子体片的膨胀依次被在磁尾不同位置的卫星观测到.等离子体尾向膨胀的平均速度约为140km·s-1.在此次亚暴事件中可观测到两种类型的偶极化.一种为偶极化锋面,其与爆发性整体流(BBF)密切相关;另一种为全球偶极化,其与等离子体片的膨胀密切相关.亚暴触发开始约7min后,THEMIS卫星在低中高纬都可以观测到Pi2脉动的发生,且Pi2脉动的振幅随着纬度的升高逐渐变大.此次亚暴事件中的离子整体流速度主要是由离子电漂移速度引起的,测得的电场为局地磁通量变化导致的感应电场. 相似文献
15.
Y.S. Ge C.T. RussellT.-S. Hsu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1243-1251
In 2001, 2002 and 2003, the Polar spacecraft probed the near equatorial plasma sheet at 9 RE near local midnight. Using the magnetic field observations, the signatures at substorm onsets are studied. Close to the flux pile-up region, the Polar spacecraft readily detects the dipolarization front, especially for pseudo onsets. An event with two distinct onsets has been examined. The signatures are found to be consistent with the multiple-onset model suggested by Russell [Russell, C.T. How northward turnings of the IMF can lead to substorm expansion onsets. Geophys. Res. Lett. 27, 3257–3259, 2000] which is a modified Near-Earth Neutral Line (NENL) model. Another similar event is also examined showing the effects of different Interplanetary Magnetic Field (IMF) conditions upon substorms. Moreover, ground effects can be very weak compared to in situ observations, especially for pseudo onsets, because these signatures appear to be localized and not global. 相似文献
16.
空间等离子体熵的不守恒可能来自于磁场位形改变和非绝热过程.熵参量PV~(5/3)被广泛应用于分析地球磁层等离子体片中的输运问题,其中,P为压力,V为单位磁通量管的体积.通过熵参量的分布和变化可以判断磁层的稳定性及揭示磁层中的动力学过程.本文利用地球磁层中熵参量的分析应用,计算了木星稳态磁层模型中磁通量管的熵参量分布.从5R_j(R_j为木星半径)到55_j,熵参量增加了4个量级,55 R)_j之后有所下降,表明所用磁层模型在55R_j之外已经不稳定.同时,假想磁场重联后的单位磁通量管的熵参量分布表明,赤道面中远磁尾的磁场重联是由尾向输运的磁力线管拉伸断裂重联引起的. 相似文献
17.
Maha Ashour-Abdalla Jean-Michel Bosqued Mostafa El-Alaoui Vahé Peroomian Takayuki Umeda Raymond J. Walker 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(10):1598-1610
On October 8, 2004, the Cluster and Double Star spacecraft crossed the near-Earth (12–19 RE) magnetotail neutral sheet during the recovery phase of a small, isolated substorm. Although they were separated in distance by ∼7 RE and in time by ∼30 min, both Cluster and Double Star observed steady, but highly structured Earthward moving >1000 km/s high speed H+ beams in the PSBL. This paper utilizes a global magnetohydrodynamic (MHD) simulation driven by Wind spacecraft solar wind input to model the large-scale structure of the PSBL and large-scale kinetic (LSK) particle tracing calculations to investigate the similarities and differences in the properties of the observed beams. This study finds that the large-scale shape of the PSBL is determined by the MHD configuration. On smaller scales, the LSK calculations, in good qualitative agreement with both Cluster and Double Star observations, demonstrated that the PSBL is highly structured in both time and space, on time intervals of less than 2 min, and spatial distances of the order of 0.2–0.5 RE. This picture of the PSBL is different from the ordered and structured region previously reported in observations. 相似文献
18.
In this paper, the y-component of magnetic field line curvature in the plasma sheet was analyzed, and two kinds of shear structures of the flapping current sheet were found, i.e. symmetric and antisymmetric. The alternating bending orientations of the guiding field are exactly corresponding to alternating north-south asymmetries of the bouncing ion population in the sheet center. Those alternating asymmetric plasma sources consequently induce the current sheet flapping motion as a driver. In addition, a substantial particle population with downward motion was observed in the center of a bifurcated current sheet. This population is identified as the quasi-adiabatic particles, and provides a net current opposite to the conventional cross-tail current. 相似文献
19.
根据磁尾中性计随地磁倾角变化的特点用光滑函数拟合中性片曲面模式,并用ISEE卫星的磁场资料来确定曲面参数。本中性片模式既保持了中性片的基本变化特征,又可以在近地处光滑过渡到赤道面。在此基础上,建立了一个以中性片曲面为坐标面的磁尾正交曲线坐标系。这个坐标系随地磁倾角的变化而变化,用这个坐标系可将不同的地磁倾角的磁场位形变换成地磁倾角为零时的标准形式,从而便于分析卫星的观测数据。 相似文献
20.
M. Kokorowski E.A. Bering III M. Ruohoniemi J.G. Sample R.H. Holzworth S.D. Bale J.B. Blake A.B. Collier A.R.W. Hughes E.H. Lay R.P. Lin M.P. McCarthy R.M. Millan H. Moraal T.P. O’Brien G.K. Parks M. Pulupa B.D. Reddell D.M. Smith P.H. Stoker L. Woodger 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
On January 20, 2005 there was an X 7.1 solar flare at 0636 UT with an accompanied halo coronal mass ejection (CME). The resultant interplanetary shock impacted earth ∼36 h later. Near earth, the Advanced Composition Explorer (ACE) spacecraft observed two impulses with a staircase structure in density and pressure. The estimated earth-arrival times of these impulses were 1713 UT and 1845 UT on January 21, 2005. Three MINIature Spectrometer (MINIS) balloons were aloft on January 21st; one in the northern polar stratosphere and two in the southern polar stratosphere. MeV relativistic electron precipitation (REP) observed by all three balloons is coincident (<3 min) with the impulse arrivals and magnetospheric compression observed by both GOES 10 and 12. Balloon electric field data from the southern hemisphere show no signs of the impulse electric field directly reaching the ionosphere. Enhancement of the balloon-observed convection electric field by as much as 40 mV/m in less than 20 min during this time period is consistent with typical substorm growth. Precipitation-induced ionospheric conductivity enhancements are suggested to be (a) the result of both shock arrival and substorm activity and (b) the cause of rapid (<6 min) decreases in the observed electric field (by as much as 40 mV/m). There is poor agreement between peak cross polar cap potential in the northern hemisphere calculated from Super Dual Auroral Radar Network (SuperDARN) echoes and horizontal electric field at the MINIS balloon locations in the southern hemisphere. Possible reasons for this poor agreement include (a) a true lack of north–south conjugacy between measurement sites, (b) an invalid comparison between global (SuperDARN radar) and local (MINIS balloon) measurements and/or (c) radar absorption resulting from precipitation-induced D-region ionosphere density enhancements. 相似文献