首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
与C波段、X波段和Ka波段相比,W波段的调频连续波(FMCW)合成孔径雷达(SAR)系统因具有更高的分辨率,更易实现低功耗与小型化而备受关注。W波段波长短,因此该波段的FMCW SAR更适用于短距离成像。提出一种W波段FMCW SAR系统的设计方案,根据提出的系统方案与指标,实现W波段FMCW轨道SAR系统的样机研制。该系统分辨率可达5 cm。系统样机试验在上海交通大学的多功能船模拖拽水池完成。设置不同目标进行成像试验,最终得到多组有效试验数据,并基于改进的RD算法进行数据处理,得到理想的SAR图像。经分析可知,系统实际分辨率优于5 cm。试验结果证明了W波段FMCW SAR系统的可行性与有效性。  相似文献   

2.
近年来,随着天基遥感应用需求的不断多样化,具备干涉测高、干涉测速等能力的多星合成孔径雷达(SAR)组网系统概念面临工程化实现的难题。为降低组网星座成本和规模,提升工程可实现性,提出了双星调频连续波(FMCW)体制毫米波SAR系统概念,并针对其中星间同步、内定标、星间数据传输等关键问题进行了详解。在双星系统的基础上,设计了多星组网拓展方式,使系统具备了高分宽幅、干涉测高、干涉测速等能力,为未来SAR星座应用方法研究提供参考。  相似文献   

3.
调频连续波合成孔径雷达(FMCwSAR)是一种新近提出来的成像雷达体制,它结合调频连续波与合成孔径成像技术,具有体积小、质量轻、成本低、分辨率高等一系列优点。在FMCWSAR成像中,由于副瓣可形成倍增的噪声,并与附近散射体产生干涉,因此,系统响应具有低副瓣是非常重要的。研究了泰勒加权对副瓣的抑制能力,并与其他加权方法进行了比较,之后给出仿真结果,证明了该方法能有效抑制FMCWSAR成像的副瓣。  相似文献   

4.
为了解决时域校正走动带来的方位空变性问题,提出了一种在方位多普勒域走动校正的斜视合成孔径雷达(SAR)成像算法。文中利用级数反演理论,将斜距公式展开至三次项,推导出SAR回波信号的两维频谱表达式。再从两维频谱出发,提出了基于两维频谱匹配滤波的斜视SAR成像算法。该算法考虑到距离空变性问题,提出先在两维频域进行走动校正和相位预滤波,接着在距离多普勒域进行线性频率变标的处理方法,经过距离脉压和方位脉压能够得到聚焦良好的SAR图像。此外,该方法与距离徙动(RMA)算法相比可以有效地降低需要处理的数据量。最后,临近空间SAR仿真实验证明本文提出方法的可行性和有效性。  相似文献   

5.
W波段FMCW体制ISAR系统成像及试验验证   总被引:1,自引:1,他引:1       下载免费PDF全文
毫米波雷达具有高分辨率、小型化、轻型化等特点,是现代雷达应用的一个重要发展方向。随着W波段元器件的突破,W波段逆合成孔径雷达(ISAR)系统的研究引起了世界发达国家的重视。W波段ISAR图像分辨率高,目标散射细节更丰富,可提高目标分类、识别精度,在军民领域均有很大的应用价值。介绍了一种W波段调频连续波(FMCW)体制ISAR系统,探讨了该体制ISAR系统性能并介绍了W波段FMCW ISAR成像处理算法。该系统发射信号中心频率为94 GHz,带宽为5 GHz。利用该系统开展了ISAR转台试验,并利用RD算法得到了ISAR系统初步成像结果。  相似文献   

6.
贺靖  谭鸽伟 《遥测遥控》2023,44(6):80-89
本文研究了一种适用于调频连续波(Frequency Modulated Continuous Wave,FMCW)合成孔径雷达(Synthetic Aperture Radar,SAR)的地面动目标成像与参数估计的方法。首先,建立FMCW SAR系统下的动目标回波模型,通过多普勒频移补偿和时频代换,提出了一种基于二阶Keystone变换校正动目标回波距离弯曲的方法。其次,用Hough变换去估计动目标距离向速度,并据此进行距离走动校正。最后,采用Wigner-Hough变换估计动目标的多普勒调频率,通过补偿二次和三次多普勒相位实现动目标的精确聚焦。仿真结果表明:该方法对参数估计有较高的准确性,同时估计的参数对动目标成像有较好的聚焦效果。  相似文献   

7.
孔令振  王辉  郑世超  温靖 《上海航天》2022,39(6):118-124
调频连续波体制合成孔径雷达(FMCW SAR)因其体积小、成本低、重量轻及分辨率高的优点越来越受到关注。随着软件无线电技术的迅速发展,数字信号处理机在SAR载荷系统中扮演越来越重要的角色。提出一种多通道Ka波段毫米波SAR数字接收机的设计与实现方法,详细分析了FMCW SAR去调频接收过程,研制出一种基于FPGA的多通道数字接收机平台。以三通道为例,采用多类滤波器级联技术,设计系统软硬件,最后通过系统测试及试验验证了方案的正确性与可行性。  相似文献   

8.
研究了线性调频连续波SAR的距离徙动算法成像.针对线性调频续波SAR的特点,在STOP AND GO近似成立的条件下,讨论距离徙动算法的实现过程.STOP AND GO近似失效时,通过补偿线性调频连续波SAR连续运动引入的多普勒频移,提出了改进,并给出仿真验证.  相似文献   

9.
与脉冲体制合成孔径雷达(SAR)相比,调频连续波(FMCW)体制SAR具有体积小、重量轻、分辨率高、功耗低和低截获等一系列优点,目前小型或微小型SAR普遍采用FMCW工作体制。FMCW SAR在整个脉冲重复周期内都发射信号,其信号占空比达到了100%,为了减小数字接收机采样带宽,降低数据率,FMCW体制毫米波SAR一般采取解线频调接收的方式,但其数据量依然很大,而且机载平台受到气流的影响,运动误差很大,需要迭代估计与补偿,给实时处理模块带来了很大压力。为了提高整个机载FMCW SAR系统的信号实时处理性能,需要在算法层面进行改进。提出了一种两次子孔径误差估计和全孔径误差拼接补偿的FMCW SAR实时成像算法,使用相位梯度自聚焦(PGA)算法和图像偏置(MD)算法级联提取子孔径误差;然后进行子孔径误差拼接成全孔径误差补偿原数据,两维脉冲压缩后完成图像聚焦,提高了FMCW体制毫米波SAR成像算法的效率;最后使用机载Ka波段FMCW SAR实测数据,验证了该算法的有效性。  相似文献   

10.
相位补偿因子、距离向补偿因子和方位向补偿因子的产生是合成孔径雷达实时CS(Chirp Scaling,调频变标)算法中的关键。针对一种现有的补偿因子区域不变CS算法进行了改进,对于更新步长内各单元的统一补偿因子,采用该区域内所有单元频率平均值对应的补偿因子,代替原来使用的第一个单元对应的补偿因子,使得最终的补偿结果相比于原有算法更加均匀,计算量与原有算法相当。经过Matlab仿真验证,改进算法的成像指标得到提升。为便于生成FPGA代码,采用Simulink工具搭建了用于生成改进算法中三种补偿因子的模型。将Simulink模型输出的代码加载到Vivado软件中,对Vivado输出的补偿因子与由Matlab输出的精确补偿因子进行了对比,精度满足要求,验证了所搭建Simulink模型的准确性。  相似文献   

11.
当距离徙动较小时,合成孔径雷达(SAR)回波信号在方位向和距离向都可以转化为调频信号,据此提出一种基于分数傅立叶变换(FRFT)的SAR成像算法,通过距离向和方位向的特定阶次的FRFT,在两个方向上把回波信号同时近似地压缩为脉冲函数。理论分析和仿真数据结果表明,该算法计算简单快速,只需两次FRFT即在分数傅立叶域可以有效成像,并且成像精度优于传统的Chirp Scaling算法。  相似文献   

12.
曲线合成孔径雷达最佳孔径研究   总被引:2,自引:0,他引:2  
基于曲线合成孔径雷达原理与空间几何关系,讨论了曲线合成孔径雷达信号模型与成像方法,推导出目标的一维信号模型、二维信号模型,并将其扩展到了三维信号模型。考虑到不同的曲线孔径形状将对方位分辨率和高度分辨率有不同影响,详细研究了各种不同形状的曲线孔径,分析和对比了各种形状的孔径,给出了各自的优缺点和适用条件。结论是上下、左右对称的孔径形状较不对称的效果更优,L型孔径将导致很高的旁瓣。仿真实验可以对真实飞行航迹起指导作用。  相似文献   

13.
陈翔  王辉 《上海航天》2019,36(5):107-114
调频连续波(FMCW)体制下,传统脉冲合成孔径雷达(SAR)的"走—停"回波模型已经不再适用,快时间走动项引入的距离-方位耦合项不可以忽略,否则会使图像质量的降低。该文首先构建FMCW回波模型,其次,提出了一种基于两步式的滑动聚束SAR成像算法。所提算法针对滑动聚束模式中,多普勒历程大于脉冲重复频率(PRF)所造成的频谱混叠问题,采用方位频域去斜的预处理加以解决。由于距离徙动校正(RCMC)后方位时域依旧混叠,该算法通过方位去斜在频域完成聚焦避免再一次的解混叠操作。通过仿真验证,该算法能够实现高精度的FMCW SAR滑动聚束成像。  相似文献   

14.
安道祥  黄晓涛  李欣  周智敏 《宇航学报》2010,31(12):2754-2763
首先,从SAR成像角度重新推导了MWD算法,新推导方法更好地阐述了MWD算法的两维分离聚焦成像原理,并使该算法在形式上能够和其它频域算法保持一致,以便于不同频域算法间的比较分析。其次,基于文中所给的MWD算法和NCS算法成像流程,研究了两种算法对低频UWB SAR的成像性能。此外,通过评估浮点运算量,对比分析了两种算法的成像效率。最后,仿真和实测数据成像结果证明了理论分析的正确性。
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号