首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Instrumentation for plant health and growth in space.   总被引:1,自引:0,他引:1  
The present-day plant growth facilities ("greenhouses") for space should be equipped with monitors and controllers of ambient parameters within the chamber because spacecraft environmental variations can be unfavorable to plants. Moreover, little is known about the effects of spaceflight on the greenhouse and rooting media. Lack of information about spaceflight effects on plants necessitates supplying space greenhouses with automatic, non-invasive monitors of, e.g., gas exchange rate, water and nutrient ion uptake, plant mass, temperature and water content of leaves. However, introduction of an environmental or plant sensor into the monitoring system may be reasonable only if it is justified by quantitative evaluation of the influence of a measured parameter on productivity, efficacy of illumination, or some other index of greenhouse efficiency. The multivariate adaptive optimization in terrestrial phytotrons appears to be one of the best methods to assess environmental impacts on crops. Two modifications of greenhouses with the three-dimensional adaptive optimization of crop photosynthetic characteristics include: (1) irradiation, air temperature and carbon dioxide using a modified simplex algorithm; and (2) using irradiation, air temperature, and humidity with sensitivity algorithms with varying frequency of test exposures that have been experimentally developed. As a result, during some stages of plant ontogensis, the photosynthetic productivity of wheat, tomatoes, and Chinese cabbage in these systems was found to increase by a factor of 2-3.  相似文献   

2.
A CELSS Experimental Facility was developed two years ago. It contains a volume of about 40.0 m3 and a cultivating area of about 8.4 m2; its interior atmospheric parameters such as temperature, relative humidity, oxygen concentration, carbon dioxide concentration, total pressure, lighting intensity, photoperiod, water content in the growing-matrix, CO2-added accumulative amount, O2-released accumulative amount and ethylene concentration are all controlled and logged automatically and effectively; its growing system consists of two rows of racks along its left-and-right sides separately, each side holds two upper-and-lower layers, and the vertical distance of each growing bed can be adjusted automatically and independently; lighting sources consist of both red (95%) and blue (5%) light-emitting diodes (LED), and the average lighting intensity of each lamp bank at 20-cm distance position under it, reaches to 255.0 μmol m−2 s−1. After that, demonstrating tests were carried out and were finally followed by growing lettuce in the facility. The results showed that all subsystems operated well and all parameters were controlled automatically and efficiently. The lettuce plants in the system could grow much well. Successful development of this system laid a necessary foundation for future larger-scale studies on CELSS integration technique.  相似文献   

3.
The ECOSIMP2 model, simulating the Plant-Soil-Atmosphere interactions, was developed as a tool for the management of an experimental artificial ecosystem. It consists in three main carbon compartments for production, consumption and decomposition of the biomass. The main biological parameters concern photosynthesis (apparent Km, CO2 compensation point), the harvest index, the rate of consumption, and the kinetics of litter decomposition. From realistic assumptions of kinetics of soil compartments, a steady-state case was obtained, simulating a terrestrial ecosystem. The stability of the atmospheric CO2 concentration was studied after a virtual enclosure of the system in a 20-m high greenhouse. In natural lighting the conditions of stability are severe because of the small size of the atmospheric compartment which amplifies any imbalance between carbon fluxes. The positive consequence of that amplification for research on artificial ecosystems was emphasized.  相似文献   

4.
5.
Climate control computers in greenhouses are used to control heating and ventilation, supply water and dilute and dispense nutrients. They integrate models into optimally controlled systems. This paper describes how information technology, as in use in other sectors of industry, is applied to greenhouse control. The introduction of modern software and hardware concepts in horticulture adds power and extra oppurtunities to climate contol in greenhouses.  相似文献   

6.
The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July–September) provides an average photosynthetic photon flux of 161.09 μmol m−2 s−1 (August) and 76.76 μmol m−2 s−1 (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 μmol m−2 s−1 (May) and 339.32 μmol m−2 s−1 (June) demonstrating that even at high latitudes adequate light is available for crop growth during 4–5 months of the year. The Canadian Space Agency Development Greenhouse [now operational] serves as a test-bed for evaluating new systems prior to deployment in the Arthur Clarke Mars Greenhouse. This greenhouse is also used as a venue for public outreach relating to biological life support research and its corresponding terrestrial spin-offs.  相似文献   

7.
The colonization of space will depend on our ability to routinely provide for the metabolic needs (oxygen, water, and food) of a crew with minimal re-supply from Earth. On Earth, these functions are facilitated by the cultivation of plant crops, thus it is important to develop plant-based food production systems to sustain the presence of mankind in space. Farming practices on earth have evolved for thousands of years to meet both the demands of an ever-increasing population and the availability of scarce resources, and now these practices must adapt to accommodate the effects of global warming. Similar challenges are expected when earth-based agricultural practices are adapted for space-based agriculture. A key variable in space is gravity; planets (e.g. Mars, 1/3 g) and moons (e.g. Earth's moon, 1/6 g) differ from spacecraft orbiting the Earth (e.g. Space stations) or orbital transfer vehicles that are subject to microgravity. The movement of heat, water vapor, CO2 and O2 between plant surfaces and their environment is also affected by gravity. In microgravity, these processes may also be affected by reduced mass transport and thicker boundary layers around plant organs caused by the absence of buoyancy dependent convective transport. Future space farmers will have to adapt their practices to accommodate microgravity, high and low extremes in ambient temperatures, reduced atmospheric pressures, atmospheres containing high volatile organic carbon contents, and elevated to super-elevated CO2 concentrations. Farming in space must also be carried out within power-, volume-, and mass-limited life support systems and must share resources with manned crews. Improved lighting and sensor technologies will have to be developed and tested for use in space. These developments should also help make crop production in terrestrial controlled environments (plant growth chambers and greenhouses) more efficient and, therefore, make these alternative agricultural systems more economically feasible food production systems.  相似文献   

8.
We divide the history of water on the Martian surface into four epochs based upon the atmospheric temperature and pressure. In Epoch 1, during which a primordial CO2 atmosphere was actively maintained by impact and volcanic recycling, we presume the mean annual temperature to have been above freezing, the pressure to have exceeded one atmosphere, and liquid water to have been widespread. Under such conditions, similar to early Earth, life could have arisen and become abundant. After this initial period of recycling, atmospheric CO2 was irreversibly lost due to carbonate formation and the pressure and temperature declined. In Epoch II, the mean annual temperature fell below freezing but peak temperatures would have exceeded freezing. Ice covered lakes, similar to those in the McMurdo Dry Valleys of Antarctica could have provided a habitat for life. In Epoch III, the mean and peak temperatures were below freezing and there would have been only transient liquid water. Microbial ecosystems living in endolithic rock "greenhouses" could have continued to survive. Finally, in Epoch IV, the pressure dropped to near the triple point pressure of water and liquid water could no longer have existed on the surface and life on the surface would have become extinct.  相似文献   

9.
Plant lighting is a critical issue for cost effectiveness of bioregenerative systems. A plant lighting system using sunlight has been investigated and compared to systems using electrical lighting. Co-generation of electricity and use of in situ resource utilization (ISRU) were also considered. The fixed part of equivalent system mass was found to be reduced by factors of from 3.1 to 3.9, according to the mission assumptions. The time-dependent part of equivalent system mass was reduced by a smaller value, of about 1.05. Cost effectiveness of bioregeneration has been compared to the cost of shipping food. Break-even times for different Lunar and Mars missions were generally in the order of 2–10 years, and were quite sensitive to the assumptions. There is significant scope for future refinement of these values, and work is ongoing.  相似文献   

10.
Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility.  相似文献   

11.
In this study, spinach plants were grown under atmospheric and low pressure conditions with constant O2 and CO2 partial pressures, and the effects of low total pressure on gas exchange rates were investigated. CO2 assimilation and transpiration rates of spinach grown under atmospheric pressure increased after short-term exposure to low total pressure due to the enhancement of leaf conductance. However, gas exchange rates of plants grown at 25 kPa total pressure were not greater than those grown at atmospheric pressure. Stomatal pore length and width were significantly smaller in leaves grown at low total pressure. This result suggested that gas exchange rates of plants grown under low total pressure were not stimulated even with the enhancement of gas diffusion because the stomatal size and stomatal aperture decreased.  相似文献   

12.
Wheat plants were grown in twin closed growth chambers under normal and reduced atmospheric pressures. For the first 22 days from sowing, the reduced pressure was maintained at 200 hPa, and at 100 hPa for the remaining 27 days until harvest. These pressures were obtained by evacuation of the chamber and adding oxygen (170 and 79 hPa respectively) and carbon dioxide (0.65 and 1.0 hPa respectively; about 2 and 3 times above the control). Eighty-seven per cent of the final dry mass was produce under 100 hPa treatment. Growth and development of wheat are not negatively affected by low pressure treatment. Compared to the control, final dry mass increased by 76%, leaf number by 133%, and ear number by 35%, probably due to elevation of CO2. Shortening of shoot parts and increases in chlorophyll and proteins content are not in accordance with a predicted CO2 effect and could be attributed to the N2 removal and the subsequent alteration in gas diffusion rate.  相似文献   

13.
The paper describes operation of 'SVET' space greenhouse onboard the 'MIR' orbital station since 15 June 1990 and the adopted biotechnological principles. The microprocessor and measuring systems for monitoring and control of the environmental parameters in the Plants growth chamber are presented. Information about the dynamic of these parameters in the course of the first space experiments with vegetables, obtained by means of telemetric data processing, is given. A draft program for the development of next generations of greenhouses of the same type as 'SVET', but with a larger area and capabilities, is worked out.  相似文献   

14.
Satellite altimetry provides continuous and spatially regular measurements of the height of the sea surface. Sea level responds to density changes of the water, to mass changes, due to addition or reduction of water mass, and to changes in the atmosphere above it. The present study examines the influence of atmospheric effects on sea-level variability in the North-East Atlantic. The association between the height of the sea surface and the North Atlantic Oscillation (NAO) is investigated by considering different sets of altimetry measurements for which the atmospheric effects have been handled differently. Altimetry data not corrected for atmospheric effects are strongly anti-correlated with the state of the NAO, reflecting the hydrostatic response of sea-level to the NAO pressure dipole. The application of an atmospheric correction to satellite altimetry observations in the NE Atlantic decreases variability of the height time series by more than 70% and reduces the amplitude of the seasonal cycle by ∼5 cm. Altimetry data for which atmospheric effects are removed via an inverse barometer correction show a non-negligible correlation with the NAO index at some locations suggesting further indirect non-hydrostatic influences of the state of the NAO on sea level variability.  相似文献   

15.
Sweetpotato (Ipomea batatas L.) ‘Whatley–Loretan’ was developed for space life support by researchers at Tuskegee University for its highly productive, nutritious storage roots. This promising candidate space life-support crop has a sprawling habit and aggressive growth rate in favorable environments that demands substantial growing area. Shoot pruning is not a viable option for vine control because removal of the main shoot apex drastically inhibits storage-root initiation and development, and chemical growth retardants typically are not cleared for use with food crops. As part of a large effort by the NASA Specialized Center of Research and Training in Advanced Life Support to reduce equivalent system mass (ESM) for food production in space, the dilemma of vine management for sweetpotato was addressed in effort to conserve growth area without compromising root yield. Root yields from unbranched vines trained spirally around wire frames configured either in the shapes of cones or cylinders were similar to those from vines trained horizontally along the bench, but occupying only a small fraction of the bench area. This finding indicates that sweetpotato is highly adaptable to a variety of vine-training architectures. Planting a second plant in the growth container and training the two vines in opposite directions around frames enhanced root yield and number, but had little effect on average length of each vine or bench area occupied. Once again, root yields were similar for both configurations of wire support frames. The 3–4-month crop-production cycles for sweetpotato in the greenhouse spanned all seasons of multiple years during the course of the study, and although electric lighting was used for photoperiod control and to supplement photosynthetic light during low-light seasons, there still were differences in total light available across seasons. Light variations and other environmental differences among experiments in the greenhouse had more effects on vine length than on root yield. Average vine length correlated positively with total hours of daylight received across seasons, and responses for one plant per container were higher above a threshold duration of solar exposure, suggesting that the vines of two plants per container compete for available light. In addition to the adaptability of sweetpotato to various vine-training architectures and across seasons in terms of maintaining root productivity, the open, interior volumes of the support frames tested in this study will provide future opportunity to enhance sweetpotato root yield in space by adding novel interior lighting, such as from intracanopy arrays of light-emitting diodes. This work was sponsored by NASA grant NAG 5 1286.  相似文献   

16.
基于MPX4115的小型无人机气压高度测量系统设计   总被引:1,自引:0,他引:1  
从气压高度测量的原理出发,介绍了基于MPX4115传感器,以C8051F020单片机为飞控计算机的小型无人机高度测量系统的组成和工作原理,并详细论述了测量系统的电路设计;利用压力校验仪对MPX4115传感器进行了辨识,保证了系统对压强的测量准确度;对高度-大气压强公式进行了数据拟合,并设计了计算程序,有效地解决了C8051F020单片机计算能力不足的问题;该系统具有体积小、功耗低、速度快、电路简单可靠等优点。  相似文献   

17.
This paper presents the mechanical design of a new robotic telescope that was designed and built to acquire lunar spectral measurements from the science pod of NASA's ER-2 aircraft while flying at an altitude of 70,000 feet (21.34 km). The robotic telescope used a double gimbal design that allowed for target tracking in azimuth and elevation. In addition to the challenging and restrictive geometry of the science pod, each component needed to be carefully selected to ensure that they could withstand the operating conditions at high altitude such as harsh temperatures extending as low as −54 °C and atmospheric pressure less than 1.05 psi (7.23 kPa). Due to the cold temperatures, low atmospheric pressure and the likely exposure to moisture, high strength industrial linear actuators were used to create an adjustable linkage system that controlled the pointing and tracking of the telescope. Although unconventional, this allowed for a robust design that outperformed the team's expectations by tracking the Moon for 40 min with an average tracking error under 0.05°. The results presented within this paper were acquired during a first set of engineering test flights, with further scientific missions to follow.  相似文献   

18.
The AGROBOT project.   总被引:2,自引:0,他引:2  
The aim of this paper is to illustrate the AGROBOT project. This project was initiated to develop a complete robotic system for the production cycle of tomato plants in a greenhouse environment. The robot architecture is based on a vehicle carrying the picking arm (a six degrees of freedom anthropomorphic arm with a gripper/hand), the head with the two micro cameras (for the color stereoscopic vision system) and the VME rack for the complete control of the system. The head was purposely developed to permit complete visibility of the overall area. The vision system drives the head to point the path during navigation or to explore the plants looking for the work objects. The robot will be able to navigate between rows of plants, stop near each plant and identify the relevant objects (fruits or flowers) so as to be able to pick ripe tomatoes or spray anticryptogamic substances on flowers. Due to its flexible architecture, the system can be suited to operate on other kinds of cultivation or could be modified to perform other kinds of operations such as transplanting or packaging. Also the field of action could be different from greenhouses: changing from a wheeled locomotion system to a tracked system, the robot will be able to operate on particularly irregular surfaces. These features make this robotic system particularly adapted to replace human from tiring and harmful tasks or operating within adverse environment.  相似文献   

19.
Constructed in 1986, the Biosphere 2 Test Module has been used since the end of that year for closed ecological systems experiments. It is the largest closed ecological facility ever built, with a sealed variable volume of some 480 cubic meters. It is built with a skin of steel spaceframes with double-laminated glass panels admitting about 65 percent Photosynthetically Active Radiation (PAR). The floor is of welded steel and there is an underground atmospheric connection via an air duct to a variable volume chamber ("lung") permitting expansion and contraction of the Test Module's air volume caused by changes in temperature and barometric pressure, which causes a slight positive pressure from inside the closed system to the outside thereby insuring that the very small leakage rate is outward. Several series of closed ecological system investigations have been carried out in this facility. One series of experiments investigated the dynamics of higher plants and associated soils with the atmosphere under varying light and temperature conditions. Another series of experiments included one human in the closed system for three, five and twenty-one days. During these experiments the Test Module had subsystems which completely recycled its water and atmosphere; all the human dietary needs were produced within the facility, and all wastes were recycled using a marsh plant/microbe system. Other experiments have examined the capability of individual component systems used, such as the soil bed reactors, to eliminate experimentally introduced trace gases. Analytic systems developed for these experiments include continuous monitors of eleven atmospheric gases in addition to the complete gas chromatography mass spectrometry (GCMS) examinations of potable, waste system and irrigation water quality.  相似文献   

20.
Radish (Raphanus sativus), lettuce (Latuca sativa), and wheat (Triticum aestivum) plants were grown at either 98 kPa (ambient) or 33 kPa atmospheric pressure with constant 21 kPa oxygen and 0.12 kPa carbon dioxide in atmospherically closed pressure chambers. All plants were grown rockwool using recirculating hydroponics with a complete nutrient solution. At 20 days after planting, chamber pressures were pumped down as rapidly as possible, reaching 5 kPa after about 5 min and ∼1.5 kPa after about 10 min. The plants were held at 1.5 kPa for 30 min and then pressures were restored to their original settings. Temperature (22 °C) and humidity (65% RH) controls were engaged throughout the depressurization, although temperatures dropped to near 16 °C for a brief period. CO2 and O2 were not detectable at the low pressure, suggesting that most of the 1.5 kPa atmosphere consisted of water vapor. Following re-pressurization, plants were grown for another 7 days at the original pressures and then harvested. The lettuce, radish, and wheat plants showed no visible effects from the rapid decompression, and there were no differences in fresh or dry mass when compared to control plants maintained continuously at 33 or 98 kPa. But radish storage root fresh mass and lettuce head fresh and dry masses were less at 33 kPa compared to 98 kPa for both the controls and decompression treatment. The results suggest that plants are extremely resilient to rapid decompression, provided they do not freeze (from evaporative cooling) or desiccate. The water of the hydroponic system was below the boiling pressure during these tests and this may have protected the plants by preventing pressures from dropping below 1.5 kPa and maintaining humidity near 1.5 kPa. Further testing is needed to determine how long plants can withstand such low pressure, but the results suggest there are at least 30 min to respond to catastrophic pressure losses in a plant production chamber that might be used for life support in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号