首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文阐明了研究航天飞机天气侵蚀效应的必要性,分析了天气侵蚀试验的模拟条件,论述了模型自由飞模拟试验在航天飞机和其它再入飞行器的天气侵蚀问题研究中的作用,最后对我国开展航天飞机天气侵蚀研究之技术途径提出了一些看法。  相似文献   

2.
航天飞机在55公里高度以上飞行时,处于高马赫数,中、低雷诺数的粘性干扰区(粘性干扰参数(?)=0.005~O.08)。传统的无粘流/边界层修正法(3DV)已不适于计算无粘/有粘强干扰的情况,而要采用全粘性激波层的 PNS 法。本文简要的介绍了美国航天飞机研制过程中采用的3DV 和 PNS 的计算方法,对航天飞机简化外形和钝锥体的粘性干扰效应进行了分析和讨论。研究结果表明,PNS 法是解决航天飞机高超声速粘性干扰效应的较为有效的数值模拟方法。  相似文献   

3.
本文采用吸力比拟原理,结合基本解的数值计算方法,用来计算航天飞机机翼从小迎角到大迎角(a=0°~30°)的亚音速纵向气动特性;而对零升阻力和机身气动特性,则用工程估算方法计算。由于目前的航天飞机,一般为下单翼的复杂外形翼-身组合体,根据文[9]的原理,可忽略翼-身干扰对纵向气动特性的影响。 本文导得可以计及涡效应的任意平面形状边条机翼的亚音速气动特性的计算公式,亦可计算尖梢机翼的展向升力分布。公式中所需的位流系数可采用涡格面元法进行数值计算来获得,压缩性效应则通过位流系数来计及。 本文计算了多种机翼和航天飞机的气动特性。与实验数据比较表明,本方法具有方法简便、计算快速和计算结果具有设计精度的优点,是计算航天飞机亚音速气动特性的一种有效方法。可供航天飞机初步设计使用,亦可作为航天飞机气动优化设计系统中的子系统。经过适当推导,本方法可推广应用于亚音速前缘的超音速情况。  相似文献   

4.
轨道器的热防护系统是航天飞机研制中的主要技术关键。本文简要地介绍了美国 Shuttle-1航天飞机轨道器研制中所遇到的有关气动热的几个主要问题,包括再入气动热环境的预测、非平衡和表面催化效应、边界层转捩影响、背风面加热和缝隙加热以及激波干扰加热等。并对用风洞试验、工程计算和数值模拟方法所得到的轨道器气动热的预测值与飞行试验的实测结果作了比较和分析。最后对需要开展的航天飞机气动热的研究工作提出了建议。  相似文献   

5.
美国第一代航天飞机(Shuttle-I)在177千米高度以上飞行时处于自由分子流区(克努曾数 Kn≥10),在83~177千米的高度范围内处于过渡流区(0.001≤Kn≤10)。传统的连续介质空气动力学已不适用了,而要用非连续的稀簿空气动力学。本文简要介绍美国航天飞机研制过程中采用过的蒙特卡罗直接模拟法、粘性激波层法和洛克希德工程计算等理论计算方法。并与风洞试验和飞行试验结果进行了比较和分析。研究结果表明:低密度效应对航天飞机的气动加热、阻力系数和升阻比等气动性能有很大的影响;理论计算与飞行试验的差别随 K_n 数的增大而增大,其差別的原因尚没有确切和满意的解答。对过渡流,目前无论是理论计算还是风洞实验都存在着较大困难。因此必须加强对航天飞机低密度效应的理论和实验研究。  相似文献   

6.
航天飞机遥测传感器的基本要求是稳定性好、高度可靠、小型化。本文介绍了航天飞机用的遥测传感器的种类与特点,在总结国外遥测传感器选用情况的基础上提出了作者对于我国航天飞机遥测传感器未来发展的设想。  相似文献   

7.
本文首先以美国阿波罗飞船和航天飞机气动特性的飞行试验结果与风洞试验结果存在差别为例,说明研究真实气体效应对发展高超声速飞行器的重要性。在分析平衡流和非平衡流中激波特性的基础上,根据典型的空天飞机上升段轨道,分析了空天飞机激波后的平衡组元分布和松弛距离。进而,讨论了真实气体效应对空天飞机气动特性的影响,其中介绍了近代研究真实气体效应的计算流体力学方法和试验技术,重点介绍了Park提出的确定化学反应速率系数的双温度模型。最后,对今后空天飞机真实气体效应的研究工作提出了建议。  相似文献   

8.
从60年代后期以来,在飞行器研制中逐渐采用先进的主动控制技术。对于航天飞机,随控布局的主要任务是放宽静稳定性,对静不稳定的航天飞机实现飞行控制,并使共具有良好的飞行品质和性能。航天飞机随控布局设计的主要参数是高超音速下的配平能力、重心后限和操纵面的气动加热。在空气动力学上,主要靠机翼机身的合理布局设计。最佳的随控布局设计比常规设计飞行器的有效载荷有显著的增加,飞行器的净重约可减少10%。  相似文献   

9.
本文研究了航天飞机再入大气层三维机动飞行时所产生的最大过载及驻点的热流峰值,提出了一种计算最大过载及热流峰值的解析方法。在一阶近似运动方程的基础上,建立了最大过载、热流峰值与航天飞机的升阻比、再入角、滚转角等参数之间的解析关系式,由之可简便地确定最大过载与热流峰值。文中分析了升阻比、再入角等参数对过载和热流的影响,并与再入三维轨道精确解的相应值作了对比,表明此种解法具有一定的精度,可供再入三维轨道特性的分析及航天飞机的初步设计阶段使用。  相似文献   

10.
本文给出了航天飞机轨道器在无粘、无侧滑和不偏舵情况下再入飞行高超音速大攻角气动力计算方法。对复杂的航天飞机外形,本文提出用三角形有限表面面元法来逼近,克服了已有方法中采用平面梯形面元逼近后近似外形有裂缝,有台阶等不连续的缺陷,其结果与实验结果吻合较好,从而证明用三角形表面面元法更为合理。  相似文献   

11.
有翼航天飞行器高速动态气动特性试验研究   总被引:1,自引:0,他引:1  
在CARDC0.6m×0.6m高速风洞中进行了航天飞机类模型的动态失速试验。在M数为0.4~1.2,迎角为0°~75°范围测量了模型的动态气动特性,研究了各种运动参数对动态气动特性的影响。结果表明,在试验范围内,俯仰振荡引起了不同程度的气动迟滞现象,各运动参数对模型的动态气动特性都有重要影响,仅在迎角约为20°~40°时,非定常法向力增量存在,相应的非定常效应较明显。  相似文献   

12.
根据美国航天飞机驮机空气动力学的研究结果,本文简要地介绍了轨道器/驮机空气动力学的高阶面元法理论计算,风洞模型试验,仿真和飞行试验。风洞模型试验是建立轨道器/驮机气动数据库的基础,仿真是确定分离程序和训练驾驶员的有效方法,飞行试验是轨道器/驮机的驮运、分离和进场着陆气动性能的最后验证。研究试验表明:飞行试验与风洞试验和仿真结果符合得较好。合理地改装现有大型运输机,可以较好地完成航天飞机轨道器的驮运和进场着陆试验任务。  相似文献   

13.
再入大气层航天飞机的动力学建模与仿真   总被引:1,自引:0,他引:1  
探讨了返回式航天飞机在再入大气层飞行阶段的动力学建模与仿真技术,基于牛顿定律建立了描述再入大气层飞行过程的六自由度非线性动力学和运动学数学模型。其中地球被描述为绕短轴自转的椭球体,重力场梯度由四阶Jeffery常数描述,航天飞机的姿态运动用四元素法描述,以避免模型方程中的数值奇异点。同时,以某型机组返回器为对象,建立了空气动力学模型,在Simulink环境下开发了飞行仿真器软件系统,检验了其性能和  相似文献   

14.
飞船、宇航探测器、航天飞机等复杂外形航天器给气体动力学,包括稀薄气体动力学提出了新的要求。本文简要介绍了为计算过渡领域中气动力与热而发展的基于位置元概念的DSMC方法的通用算法。该方法解决了计算物面通量量的技术难点并已用于模拟圆球、飞船、类航天飞机的绕流。正在进行的航天实践,如麦哲伦飞船对金星的探测、行星大气中的气动制动、伽利略飞船的木星之行、尾屏蔽在太空中获得高真空的实验等等提出了新的气动力问题,稀薄气体动力学和DSMC方法是有力的工具。  相似文献   

15.
介绍在CARDCFL—23,FL-24,FL—31以及水洞中典型的航天飞机轨道器模型流态观察的试验结果,并对结果作了初步分析。  相似文献   

16.
本文讨论了风洞数据库的由来和基本概念以及在航天飞机研制中的应用。简述了 CHRYSLER 公司的 DATAMAN 管理系统和兰利中心 RIM 管理系统的发展。最后介绍了数据库设计的基本步骤。  相似文献   

17.
应航天部邀请,美籍华裔科学家、美国促进中国科普协会会长李杰信博士于1987年7月来参加“首层中国青少年航天飞机科学实验活动”全国发奖大会。李博士7月27到航天部北京强度与环境研究所参观并进行技术交流。在陈奇妙所长陪同下参观了该所的静、动、热试验  相似文献   

18.
本文根据航天飞机防热瓦缝隙流动的特点,从二维定常不可压缩层流的 N-S方程出发,提出了一个简化流动模型,即缝隙的二维流动可近似当作两个准一维沟槽流动的线性迭加,由此给出了缝隙中的热流率与压力、压力梯度和缝隙宽度的变化规律,并利用现有的实验结果作了验证。  相似文献   

19.
机器人运行速度的提高受到其高的加、减速度所激励的振动的限制。因为手臂的振动降低了手臂到达终点的定位精度,并延长了定位到终点的时间。本文提出了一个用死拍控制规律来提高柔性机器人的运行速度、抑制终端振动及提高定位精度的设计方法,它可提高如航天飞机舱外遥控机械手的定位精度,以及机器人自动化生产的劳动生产率。  相似文献   

20.
叙述航天飞机简化模型流场测量与观察,进行了旋涡场测量,机身压力分布测量和组合体的油流观察。试验M数为0.4,0.6,0.8,1.5,攻角为0°,6°,8°,10°,12°,15°,17°和20°。分析三种方法所得结果,符合得很好  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号