首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spores of Bacillus subtilis (TKJ 3412), cells of Deinococcus radiodurans R1 (wild type) and conidia of Aspergillus ochraceus (strain 3174) have been UV irradiated (254 nm) in the dry state (3% relative humidity, argon) or in aqueous suspension at room temperature, at −55°C to −70°C and at −165°C to −170°C. The following effects have been analyzed: decrease in viability, occurrence of DNA strand breaks (pulsed-field gel electrophoresis) and production of DNA-protein cross-links (membrane filter method). The loss in viability is usually more pronounced at around −70°C than at room temperature, but it is lowest around −170°C. The kind of prevailing DNA damage varies from organism to organism. The amount of UV induced DNA-protein cross-link products steadily decreases with the temperature and is lowest at −170°C. The decrease in highly polymeric DNA by double strand breaks follows no universal pattern. The observed hypersensitivity of the three very different species at −70°C can therefore not be simply explained on the basis of the number of DNA lesions analyzed in the course of this work. We suggest that also the changing state of cellular water below and above about −130°C significantly contributes to the change in photosensitivity.  相似文献   

2.
Exposure of fungal conidia (Aspergillus ochraceus) or spores of Bacillus subtilis to extreme dryness or vacuum induces DNA lesions, including strand breaks and the formation of DNA-protein cross-links. In wet cells only a small amount of protein is bound to DNA, but exposure to conditions of lowered water activity results in an increasing number of cross-links between DNA and proteins. In fungal conidia these cross-links are detected after selective iodination (125 J) of the DNA-bound proteins followed by gel electrophoresis and subsequent autoradiography. Another approach is the labelling of DNA with 32P by means of nick translation and the detection of differences in the electrophoretic mobility of DNA before and after digestion with proteinase K of proteins bound to DNA.  相似文献   

3.
The general goal of the experiment was to study the response of anhydrobiotic (metabolically dormant) microorganisms (spores of Bacillus subtilis, cells of Deinococcus radiodurans, conidia of Aspergillus species) and cellular constituents (plasmid DNA, proteins, purple membranes, amino acids, urea) to the extremely dehydrating conditions of open space, in some cases in combination with irradiation by solar UV-light. Methods of investigation included viability tests, analysis of DNA damages (strand breaks, DNA-protein cross-links) and analysis of chemical effects by spectroscopic, electrophoretic and chromatographic methods. The decrease in viability of the microorganisms was as expected from simulation experiments in the laboratory. Accordingly, it could be correlated with the increase in DNA damages. The purple membranes, amino acids and urea were not measurably effected by the dehydrating condition of open space (in the dark). Plasmid DNA, however, suffered a significant amount of strand breaks under these conditions. The response of these biomolecules to high fluences of short wavelength solar UV-light is very complex. Only a brief survey can be given in this paper. The data on the relatively good survival of some of the microorganisms call for strict observance of COSPAR Planetary Protection Regulations during interplanetary space missions.  相似文献   

4.
Spores of different strains of Bacillus subtilis and the Escherichia coli plasmid pUC19 were exposed to selected conditions of space (space vacuum and/or defined wavebands and intensities of solar ultraviolet radiation) in the experiment ER 161 "Exobiological Unit" of the Exobiology Radiation Assembly (ERA) on board of the European Retrievable Carrier (EURECA). After the approximately 11 months lasting mission, their responses were studied in terms of survival, mutagenesis in the his (B. subtilis) or lac locus (pUC19), induction of DNA strand breaks, efficiency of DNA repair systems, and the role of external protective agents. The data were compared with those of a simultaneously running ground control experiment. The survival of spores treated with the vacuum of space, however shielded against solar radiation, is substantially increased, if they are exposed in multilayers and/or in the presence of glucose as protective, whereas all spores in "artificial meteorites", i.e. embedded in clays or simulated Martian soil, are killed. Vacuum treatment leads to an increase of mutation frequency in spores, but not in plasmid DNA. Extraterrestrial solar ultraviolet radiation is mutagenic, induces strand breaks in the DNA and reduces survival substantially; however, even at the highest fluences, i.e. 3 x 10(8) J m-2, a small but significant fraction of spores survives the insolation. Action spectroscopy confirms results of previous space experiments of a synergistic action of space vacuum and solar UV radiation with DNA being the critical target.  相似文献   

5.
Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step process [correction of processes], we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 angstroms may cause cell transformation and that two DNA breaks formed within 20 angstroms may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double strand breaks in mammalian cells. At present the role of oncogenes in radiation cell transformation is unclear.  相似文献   

6.
DNA damage induced by heavy ions in bacterial cells and bacteriophages such as Bacillus subtilis, E. coli and Bacteriophage T1 were investigated by analyzing the double strand breaks in the chromosomal DNA. This kind of lesion is considered as one of the main reasons for lethal events. To analyze double strand breaks in long molecules of DNA--up to some Mbp in length--the technique of pulse field agarose gel electrophoresis has been used. This allows the detection of one double strand break per genome. Cell lysis and DNA isolation were performed in small agarose blocks directly. This procedure secured minimum DNA destruction by shearing forces. After running a gel, the DNA was stained with ethidium bromide. The light intensity of ethidium bromide fluorescence for both the outcoming (running) DNA and the remaining intact DNA were measured by scanning. The mean number of double strand breaks was calculated by determining the quotient of these intensities. Strand break induction after heavy ion and X-ray irradiation was compared.  相似文献   

7.
The growth of Penicillium notatum colonies after UV irradiation of dried mycelium or spores was studied in relation to post-irradiation temperature and salt environment. Dried mycelium and spores behaved differently with respect to sensitivity to temperature, salts and UV, especially the latter. Threshold inhibitory doses for spores were modified markedly either at 4°C or in magnesium and calcium chlorides. It is suggested that these temperature and salt effects are related to prevention of photochemical membrane damage.  相似文献   

8.
Vegetative cells of E. coli differing in their radiosensitivity have been used in heavy ion irradiation experiment. Besides inactivation measurements also the induction of DNA double strand breaks (DSB) have been measured using the method of pulse-field gel electrophoresis. This method allows to separate linear DNA with length up to 8 Mio base pairs. After irradiation with heavy ions we find a higher amount of low molecular weight fragments when compared to sparsely ionizing radiation. This agrees with the idea that heavy ions as a structured radiation have a high probability to induce more than one strand break in a DNA molecule if the particle hits the DNA. The amount of intact DNA remaining in the agarose plugs decreases exponentially for increasing radiation doses or particle fluences. From these curves cross sections for the induction of DSB after heavy ion irradiation have been determined. These results will be discussed in comparison to the results for cell survival.  相似文献   

9.
Earthly microorganisms might have contaminated Mars for millions of years by intellectual activities or natural transfer. Knowledge on the preservation of microorganisms may help our searching for life on outer planets, particularly Mars-contaminated earthly microorganisms at ancient time. Extreme dryness is one of the current Mars characteristics. However, a humid or watery Mars at earlier time was suggested by evidence accumulated in recent decades. It raises the question that whether water helps preservation of the microorganisms or not, particularly those with high possibility of interplanetary transfer like spores and Deinococci. In this study, we examined the effects of desiccation and high humidity on survival and DNA double strand breaks (DSB) of Escherichia coli, Deinococcus radiodurans and spores of Bacillus pumilus at 25, 4 and −70 °C. They exhibited different survival rates and DSB patterns under desiccation and high humidity. Higher survival and less DSB occurred at lower temperature. We suggest that some Mars-contaminated bacteria might have been viably preserved on cold Mars regions for long periods, regardless of water availability. It is more likely to find ancient spores than ancient Deinococci on Mars. In our search for preserved extraterrestrial life, priority should be given to the Mars Polar Regions.  相似文献   

10.
A wide variety of terrestrial organisms, the so-called "anhydrobiotes," has learned to survive in a state of extreme dehydration in dry environments. Strategies for survival include the accumulation of certain polyols and nonreducing saccharides, which help to prevent damage to membranes and proteins, but at low water partial pressure DNA is also progressively damaged by various lesions, including strand breaks and cross-linking to proteins. These lesions, if they are not too numerous, can be repaired before the first replication step after rehydration, but long-term exposure to dry conditions finally diminishes the chances of survival as these lesions accumulate. If an organism has no chance to repair the accumulated DNA damage during intermittent periods of active life, survival will not exceed a few decades. The restriction of survival by dryness-induced DNA lesions is corroborated by new data on conidia of Aspergillus and the free plasmid pBR 322. Our results will be discussed with respect to the chance of finding dormant life or biochemical fossils on the surface of Mars.  相似文献   

11.
The topics of this presentation are: a brief review of the early research, the ideas it stimulated and the ways they are used in current efforts to explain cellular radiosensitivity; an analysis of the strengths and weaknesses of two experimental models used in vitro for simulating the induction of double strand breaks (DSB) and single strand breaks (SSB) in situ. Note that when alkali is used to denature cellular DNA for the determination of strand breaks, both overt SSB and the SSB that result from DSB in the denaturation process are recorded as total strand breaks (TSB). All information is taken from published literature.  相似文献   

12.
Bacterial spores are proper test organisms for studying problems of space biology and exobiology. During the Spacelab 1 mission, studies on the limiting factors for survival of Bacillus subtilis spores in free space have been performed. An exposure tray on the pallet of Spacelab 1 accomodated 316 samples of dry spores for treatment with space vacuum and/or the following selected wavelengths of solar UV: > 170 nm, 220 nm, 240nm, 260nm and 280 nm. After recovery, inactivation, mutation induction, reparability, and photochemical damages in DNA and protein have been studied. The results contribute to the understanding of the mechanisms of increased UV sensitivity of bacterial spores in vacuo and to a better assessment of the chance of survival of resistant forms in space and of interplanetary transfer of life.  相似文献   

13.
When the natural logarithm of the surviving fraction is plotted against the dose of radiation, curves with shoulders at relatively high survival levels are obtained after gamma-rays. The curves were practically linear in case of HMV-I and HA-1 cells irradiated by charged particle beams. These cells were derived from human malignant melanoma and Chinese hamster cells, respectively. The amount of DNA single strand breaks (ssb) by gamma-rays or nitrogen-ions (LET=530KeV/micrometers) in HMV-I cells increases linearly with increment in dose, when the ssb is detected using the alkaline elution technique. There is no close relationship between the dose-response curve of the ssb and the dose-survival curves after gamma-rays or N-ions. The amount of DNA double strand breaks (dsb) by gamma-rays increases quadratically with increment of dose, in both HMV-I cells and HA-1 cells, when the dsb is detected using the neutral elution technique. The survival fraction for HA-1 cells is slightly higher than that for HMV-I cells, at the same dose, and the amount of dsb for HA-1 cells is considerably greater than that for HMV-I cells. These results suggest that the radiosensitivities to gamma-rays in different cell lines do not correspond to the number of DNA strand breaks. The amount of both non-repairable ssb and dsb also increases quadratically with increment of dose for gamma-rays and almost linearly with increment of dose for N-ions and alpha-particles (LET=36keV/micrometers for HA-1 cells and LET=77keV/micrometers for HMV-I cells). The dose-response curves for non-repairable dsb in case of these radiations seemed to mirror image the dose-survival curves for these radiations, in both cell lines. The number of non-repairable DNA strand breaks in the two cell lines, at the same level of survival was much the same. These results show the close relationship between the induction of non-repairable DNA strand breaks and cell killing.  相似文献   

14.
We analyzed DNA and proteins obtained from normal and transformed human mammary epithelial cells for studying the neoplastic transformation by high-LET irradiation in vitro. We also examined microsatellite instability in human mammary cells transformed to various stages of carcinogenesis, such as normal, growth variant and tumorigenic, using microsatellite marker D5S177 on the chromosome 5 and CY17 on the Chromosome 10. Microsatellite instabilities were detected in the tumorigenic stage. These results suggest that microsatellite instability may play a role in the progression of tumorigenecity. The cause of the genomic instability has been suggested as abnormalities of DNA-repair systems which may be due to one of the three reasons: 1) alterations of cell cycle regulating genes. 2) mutations in any of the DNA mismatch repair genes. 3) mutation in any of the DNA strand breaks repair genes. No abnormality of these genes and encoded proteins, however was found in the present studies. These studies thus suggest that the microsatellite instability is induced by an alternative mechanism.  相似文献   

15.
The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV micrometers-1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of non-rejoined breaks is found, even after prolonged periods of incubation. At the highest LET value (16,300 keV micrometers-1) no significant repair is observed. These LET-dependencies are consistent with the current mechanistic model for radiation induced cataractogenesis which postulates that genomic damage to the surviving fraction of epithelial cells is responsible for lens opacification.  相似文献   

16.
Simian virus (SV40) DNA was used to study the induction of DNA strandbreaks by heavy ions varying in LET. DNA was exposed to X-rays and to accelerated particles either in dilute solution or in the presence of different radical scavengers. Relative proportions of the intact supercoiled DNA, nicked form arising from single strand breaks (SSB) and linear molecules produced by double strandbreaks (DSB) were quantified on the base of their electrophoretic mobility in agarose gels. Cross sections for the induction of SSBs and DSBs were calculated from the slope of dose effect curves. Mercaptoethanol was found to protect more efficiently against DNA strand breakage than Tris. When the biological efficiency, i.e. the number of strand breaks per unit dose and molecule weight was evaluated as a function of LET, curves for SSB induction always showed a continuous decrease. For DSB induction, an increase in the yield of DSBs with a maximum around 500 keV/micrometer was observed in the presence of radical scavenger. This peak of biological efficiency gradually disappeared when the radiosensitivity of the system was increased, and was no longer apparent in the dilute buffer system, where DNA showed a high susceptibility to strand breakage. When the relative biological efficiency was plotted versus LET, the curve for DSB induction observed in a low radical scavenging environment paralleled the curve obtained for SSB induction.  相似文献   

17.
We have aimed to present a comprehensive review of our understanding to date of the formation of DNA strand breaks induced by high LET radiation. We have discussed data obtained from DNA in solution as well as from the formation and "repair" of strand breaks in cell DNA. There is good agreement, qualitatively, between these two systems. Results were evaluated for two parameters: (1) effectivity per particle, the cross section (sigma) in micrometers 2/particle; and (2) the strand break induction frequency as number of breaks per Gy per unit DNA (bp or dalton). A series of biological effects curves (one for each Z-number) is obtained in effectivity versus LET plots. The relationships between induction frequencies of single-strand breaks, or double-strand breaks, or the residual "irrepairable" breaks and LET-values have been evaluated and discussed for a wide spectrum of heavy ions, both for DNA in solution and for DNA in the cell. For radiation induced total breaks in cell DNA, the RBE is less than one, while the RBE for the induction of DSBs can be greater than one in the 100-200 keV/micrometers range. The level of irrepairable strand breaks is highest in this same LET range and may reach 25 percent of the initial break yield. The data presented cover results obtained for helium to uranium particles, covering a particle incident energy range of about 2 to 900 MeV/u with a corresponding LET range of near 16 to 16000 keV/micrometers.  相似文献   

18.
Biochemical mechanisms and clusters of damage for high-LET radiation.   总被引:4,自引:0,他引:4  
Using mechanisms of indirect and direct radiation, a generalized theory has been developed to account for strand break yields by high-LET particles. The major assumptions of this theory are: (i) damage at deoxyribose sites results primarily in strand break formation and (2) damage to bases leads to a variety of base alterations. Results of the present theory compare well with cellular data without enzymatic repair. As an extension of this theory, we show that damage clusters are formed near each double strand break for high-LET radiation only. For 10 MeV/n (LET = 450 keV/micrometer) neon ions, the results show that on average there are approximately 3 additional breaks and approximately 3 damaged bases formed near each double strand break. For 100 MeV/n helium ions (LET = 3 keV/micrometer), less than 1% of the strand breaks have additional damage within 10 base pairs.  相似文献   

19.
Cells of Bacillus subtilis strain TKJ 8431 in stationary phase were irradiated with X-rays (150 kV at DLR) or heavy ions (Ne, Ar, Pb with residual energies between 3 and 15 MeV/u at GSI). The action cross section for the formation of double strand breaks in the DNA of the irradiated cells follows a similar dependence on mass and energy of the ions as has been found for various biological endpoints, e.g. inactivation, mutagenesis and repair efficacy.  相似文献   

20.
A theoretical approach to the understanding of the biochemical mechanisms of indirect action of ionizing radiation on SV40 DNA in aqueous solution is presented. The extent of OH attack on the sugar moiety and bases has been calculated. A realistic model for the DNA (in B form) based on available X-ray diffraction data is used and specific reaction sites for the OH radicals are obtained. A Monte Carlo scheme is used to follow the diffusion and reaction of the OH radicals. Effects of track structure have been considered and the single strand break D37 values for 14 MeV electrons (low-LET) and 670 MeV/u and 40 MeV/u neon particles are presented. Calculated results are in agreement with available experimental data. It has been found that regardless of the qualities of radiation, 80% of the OH attack on DNA is on the bases and 20% is on the deoxyribose. From probability considerations only, it appears that the number of double strand breaks varies linearly with dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号