首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
For the study of gravity's role in the processes of plant cell differentiation in-vitro, a model "seed-seedling-callus" has been used. Experiments were carried out on board the orbital stations Salyut-7 and Mir as well as on clinostat. They lasted from 18 to 72 days. It was determined that the exclusion of a one-sided action of gravity vector by means of clinostat and spaceflight conditions does not impede the formation and growth of callus tissue; however, at cell and subcellular levels structural and functional changes do take place. No significant changes were observed either on clinostat or in space concerning the accumulation of fresh biomass, while the percentage of dry material in space is lower than in control. Both in microgravity (MG) and in control, even after 72 days of growth, cells with a normally developed ultrastructure are present. In space, however, callus tissue more often contains cells in which the cross-section area of a cell, a nuclei and of mitochondria are smaller and the vacuole area--bigger than in controls. In microgravity a considerable decrease in the number of starch-containing cells and a reduction in the mean area of starch grains in amyloplasts is observed. In space the amount of soluble proteins in callus tissue is 1.5 times greater than in control. However, no differences were observed in fractions when separated by the SDS-PAGE method. In microgravity the changes in cell wall material components was noted. In the space-formed callus changes in the concentration of ions K, Na, Mg, Ca and P were observed. However, the direction of these changes depends on the age of callus. Discussed are the possible reasons for modification of morphological and metabolic parameters of callus cells when grown under changed gravity conditions.  相似文献   

2.
Data are presented of a comparative analysis on rhizogenesis in the Arabidopsis thaliana tissue culture growing in a solid nutrient medium under stationary conditions, clinostatic conditions and microgravity. Tissue samples weighing 100 mg. were set in the Petri dishes and placed in a horizontal slow clinostat /2 revs/min/. After 14 days of growth they were analyzed. On clinostating the number of roots formed from the callus cells was approximately one half the control. The formed root cap manifested no essential differences, in comparison with the stationary control, in the number of layers and cell sizes in its layers. In callusogenic roots, formed from clinostated cells, differentiation including root cap cells, proceeds without noticeable deviations from the norm. At the same time, gravireceptor cells do not function under these conditions. This is clearly displayed at a structural level in the location of amyloplasts-statoliths throughout the cytoplasm. The callus cell cultures experienced microgravity for 8 days. The number of formed roots under the influence of this factor was 36% relative to the stationary control. Root cap formation was abnormal. Gravireceptor cells did not formed under microgravity.  相似文献   

3.
Experiments on primary roots of Lepidium sativum L. have been performed on board the Bion-10 satellite. The experimental set-up was extremely miniaturized and completely automatic. The results demonstrate the effectiveness of the instrumentation. The spatial orientation, growth, root cap differentiation and statocyte structure of roots grown under microgravity (MG) have been compared with control roots grown on the ground (GC) and in a 1G-reference centrifuge in space (RC). Root length and cap shape did not differ between MG and control samples. Under MG, the mean distance of the statoliths from the distal cell wall of the statocytes increased significantly, the mean distance of the mitochondria decreased and the nucleus did not change its position in comparison to both controls. The number and the shape of the amyloplasts (statoliths) were not influenced by the space flight factors, but their size as well as their relative area in the cell decreased. The number of starch grains per statolith as well as their size and shape changed under MG. In MG and RC samples the number of lipid bodies in the statocytes was higher and the relative area larger than in GC samples. The relative area occupied by vacuoles was greater in RC statocytes than in GC and MG statocytes. These results partly confirm and, in addition, extend the data from earlier experiments in space.  相似文献   

4.
There has been no convincing explanation on a mechanism inducing plagiogravitropism of lateral roots. The present work deals with gravitropic features of Vignaangularis lateral roots during the course of their growth and morphometric analysis of root caps, columella cells and amyloplasts. Regardless of the magnitude of deviation of the primary root axis from the gravity vector, the newly emerging lateral roots tended to keep a constant angle to the gravity vector. They modified gravireaction several times during the course of their development: a first horizontal-growth stage when they grow in the cortex of primary roots (stage I), a sloping-down growth stage from their emergence to a length of about 1 mm (stage II), a second horizontal-growth stage from a length of about 1 mm to that of over 4 mm (stage III) and a curving-down stage thereafter (stage IV). The columella cells with amyloplasts large enough to sediment were not fully differentiated in the stage I but the turning point from the stage I to II was associated with the development of amyloplasts which were able to sediment toward the distal part of the cell. Amyloplasts were significantly small in the lateral roots over 10 mm long compared with those in ones 0–10 mm long, suggesting that they rapidly develop immediately after the lateral roots emerge from primary roots and then gradually decrease their size when the lateral roots grow over 10 mm long. This dimensional decrease of amyloplasts may be partially involved in weak gravireaction in the stage III. Evidence was not presented indicating that a switchover from the stage III to IV was connected with the dimension of root caps, the number of columella cells and the development of amyloplasts. Some factors at the molecular level rather than at the cellular and tissue levels are probably dominant to induce the stage IV.  相似文献   

5.
An axis clinostat was constructed to create micro and negative gravity also a rotated flat disk was constructed with different rotation rates to give increased gravity, by centrifugal force up to 48 g. Rice seeds were grown on agar in tubes at the constant air temperature of 20 degrees C under an average light condition of 110 micromol/m2/sec(PPF). Humidity was not controlled but was maintained above 90%. Since the tube containers were not large enough for long cultivation, shoot and root growth were observed every 12 hours until the sixth day from seeding. The lengths of shoots and roots for each individual plant were measured on the last day. The stem lengths were increased by microgravity but the root lengths were not. Under the negative gravity, negative orthogeotropism and under microgravity, diageotropism was observed. No significant effect of increased gravity was observed on shoot and root growth.  相似文献   

6.
比较研究了SJ-8返回式卫星留轨舱微重力条件与地面三维回转模拟微重力条件下青菜生长与发育情况.研究发现空间微重力条件下青菜开花过程需要大约18 h,明显长于地面对照5 h左右.回转器模拟实验结果表明,改变重力影响了花瓣的伸展与发育及花粉的产量,回转条件下花粉细胞中的微管排列明显不同于静止对照.细胞骨架受到干扰可能是改变重力条件下花粉产量降低的原因之一.本研究首次报道了在空间飞行试验中成功地采用了显微实时图像技术观察植物的开花过程,并获得了从花蕾到开花结束各阶段清晰的图像.   相似文献   

7.
Plant cells characterized by apical growth, for example, root hairs and apical cells of moss protonema, are a convenient model to address the problem of gravity response mechanisms including initiation of cell polarity. The fluorescent calcium probe, chlorotetracycline, allowed us to display the calcium distribution gradient in these cells. Irradiation by red light led to a sharp decrease in the Ca2+ ion activity in cells. During clinostatting in darkness the pattern of calcium influx and distribution changes inconsiderably as compared with control; in root hairs calcium is detected mainly in their apices and bases as in control. Addition of chlorpromazine to the medium probably increases the influx and accumulation of Ca2+ ions. Under data obtained confirm speculations on the Ca2+ ion functional role for the apical growth of plant cells and may suggest the participation of gravity in redistribution or activation of ion channels, calcium channels included, in the plasmalemma.  相似文献   

8.
The changed gravity conditions do not prevent the process of cell dedifferentiation and formation of callus. Yet, callus grown on the clinostat and in space differs from the control one: its consistence is denser, occurence of meristematic centres is less frequent and it shows a reduced proliferative activity of cells. Average size of cell and nuclei area in the test variants is lower than in the control.  相似文献   

9.
The manifestation of gravitropic reaction in plants has been considered from the phylogenetic point of view. A chart has been suggested according to which it is supposed that the first indications of the ability to identify the direction of the gravitational vector were inherent in the most ancient eukaryotes, which gave rise to green, brown, yellow-green, golden and diatomaceous algae as well as fungi. The experiments on the role of gravity in plant ontogenesis are being continued. The sum total of the data obtained in a number of experiments in space shows that under these conditions a structurally modified but normally functioning gravireceptive apparatus is formed. The data confirming the modification, under changed gravity, of the processes of integral and cellullar growth of the axial organs of seedlings as well as of the anatomo-morphological structure and developmental rates of plants during their prolonged growth in space are presented. It is assumed that this fact testifies to the presence of systems interacting with gravity during plant ontogenesis. At the same time the necessity for further experiments in order to differentiate an immediate biological effect of gravity from the ones conditioned by it indirectly due to the changes in the behavior of liquids and gases is pointed out. The methodological aspects of biological experiments in space as the main source of reliable information on the biological role of gravity are discussed.  相似文献   

10.
Physico-chemical characteristics of biomembranes and cell gravisensitivity.   总被引:1,自引:0,他引:1  
The resistance of living systems to the action of environmental factors is known to be largely determined by molecular organization of biomembranes constituting the basis of the cell per se and of all intracellular organelles. Gravity as one of the environmental factors, plays a definite role in the vital activity of organisms. Therefore, the problem of altered gravity impact on biological objects should be considered in close relation to the functional state of membranes and contractible elements of cytoskeleton. Moreover, the involvement of membrane structures and cytoskeleton in the processes of reception and realization of gravitational stimulus allows us to evaluate the extent of the direct or indirect influence of gravity on cell functioning in the gravitational field. The results of experimental studies having been conducted up to this time on a variety of cells and cell organelles under altered gravity conditions demonstrated noticeable alterations in the molecular organization of the membranes.  相似文献   

11.
Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle/tracking response as the curve of the surface changed. We propose that the interaction of touch and gravity sensing/response systems combine to strictly control the tropic growth of the root. Such signal integration is likely a critical part of growth control in the stimulus-rich environment of the soil.  相似文献   

12.
Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation.  相似文献   

13.
Influence of different natural physical fields on biological processes.   总被引:1,自引:0,他引:1  
In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus (Proteus vulgaris), spatial disorientation in coleoptiles of Wheat (Triticum aestivum) and Pea (Pisum sativum) seedlings, mutational changes in Crepis (Crepis capillaris) and Arabidopsis (Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.  相似文献   

14.
Gravity may influence different aspects of plant activity. The present report deals with two questions: gravity as an ecological factor determining spatial orientation of plant growth; and second, a possible requirement for gravity in the process of normal growth, morphogenesis and generative development of plants.  相似文献   

15.
The initial event of gravity perception by plants is generally thought to occur through sedimentation of amyloplasts in specialized sensory cells. In the root, these cells are the columella which are located toward the center of the root cap. To define more precisely the contribution of columella cells to root gravitropism, we used laser ablation to remove single columella cells or groups of these cells and observed the effect of their removal on gravity sensing and response. Complete removal of the cap or all the columella cells (leaving peripheral cap cells intact) abolishes the gravity response of the root. Removal of stories of columella revealed differences between regions of the columella with respect to gravity sensing (presentation time) versus graviresponse (final tropic growth response of the root). This fine mapping revealed that ablating the central columella located in story 2 had the greatest effect on presentation time whereas ablating columella cells in story 3 had a smaller or no effect. However, when removed by ablation the columella cells in story 3 did inhibit gravitropic bending, suggesting an effect on translocation of the gravitropic signal from the cap rather than initial gravity perception. Mapping the in vivo statolith sedimentation rates in these cells revealed that the amyloplasts of the central columella cells sedimented more rapidly than those on the flanks do. These results show that cells with the most freely mobile amyloplasts generate the largest gravisensing signal consistent with the starch statolith hypothesis of gravity sensing in roots.  相似文献   

16.
The life of plants and other organisms is governed by the constant force of gravity on earth. The mechanism of graviperception, signal transduction, and gravireaction is one of the major themes in space biology. When gravity controls each step of the life cycle such as growth and development, it does not work alone but operates with the interaction of other environmental factors. In order to understand the role of gravity in regulation of the life cycle, such interactions also should be clarified. Under microgravity conditions in space, various changes are brought about in the process of growth and development. Some changes would be advantageous to organisms, but others would be unfavorable. For overcoming such disadvantages, it may be required to exploit some other environmental factors which substitute for gravity in some properties. In terrestrial plants, gravity can be replaced by light under certain conditions. The gravity-substituting factors may play a principal role in future space development.  相似文献   

17.
Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we intend to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.  相似文献   

18.
通过模拟来研究微重力对hMSC向成骨细胞分化的影响,并利用相关信号通路的激活剂或抑制剂来调节这一分化过程.研究结果表明,在成骨细胞分化诱导条件下,微重力降低了hMSC向成骨细胞定向分化的能力,并且成骨细胞标记性基因的表达明显降低, Runt相关转录因子2(Ruax2)的表达受到抑制.相反,过氧化物酶体增殖激活受体γ(PPARγ2)的表达则增加.同时,微重力也降低了ERK的磷酸化水平,而增加了p38MAPK的磷酸化水平.使用p38MAPK的抑制剂SB203580能够抑制p38MAPK的磷酸化,但不能降低PPARγ2的表达水平.骨形态发生蛋白(BMP)能增加Runx2的表达水平.成纤维细胞生长因子2(FGF2)增加了ERK的磷酸化水平,但也不能显著增加成骨细胞标记性基因的表达水平.采用BMP,FGF2和SB203580三种因子组合来调控微重力下的成骨细胞分化能力,结果表明三者的协同作用能显著逆转微重力对成骨细胞定向分化的生物学效应.研究结果还说明,模拟微重力应该是通过不同的细胞信号通路来抑制成骨细胞分化和提升脂肪细胞分化的.   相似文献   

19.
We examined whether sedimentable amyloplasts act as statolith in the perception of gravity in woody stems using the elongated internodes of Japanese cherry (Prunus jamasakura Sieb. ex Koidz.). In the internode of the seedlings grown on earth, amyloplasts were found sedimented at the distal end of each cell of the endodermal starch sheath tissue. In the internode grown on three-dimensional (3-D) clinostat, amyloplasts were dispersed throughout the cell matrix in the endodermal starch sheath tissue. After changing the positions of the internode from vertical to horizontal, re-sedimentation of amyloplasts toward the direction of gravity was completed in 1h, whereas the bending of the internode was observed after 12 days. We propose that sedimentable amyloplasts in the endodermal starch sheath cells may play a role in gravity perception leading to secondary xylem formation in the secondary thickening growth and eccentric growth in gravi-bending of tree stems.  相似文献   

20.
Previous investigations revealed that the growth of fish inner ear otoliths depends on the amplitude and the direction of gravity, thus suggesting the existence of a (negative) feedback mechanism. In the course of these experiments, it was shown that altered gravity both affected otolith size (and thus the provision of the proteinacious matrix) as well as the incorporation of calcium. It is hitherto unknown, as of whether sensory hair cells are involved either in the regulation of otolith growth or in the provision of otolithic material (such as protein or inorganic components) or even both. The ototoxic aminoglycoside gentamicin (GM) damages hair cells in many vertebrates (and is therefore used for the treatment of Meniere's disease in humans). The present study was thus designed to determine as of whether vestibular sensory cells are needed for otolith growth by applying GM in order to induce a (functionally relevant) loss of these cells. Developing cichlid fish Oreochromis mossambicus were therefore immersed in 120 mg/l GM for 10 or 21 days. At the beginning and at the end of the experimental periods, the fish were incubated in the calcium-tracer alizarin complexone (AC). After the experiment, otoliths were dissected and the area grown during GM-exposure (i.e., the area enclosed by the two AC labellings) was determined planimetrically. The results showed that incubating the animals in a GM-solution had no effect on otolith growth, but the development of otolith asymmetry was affected. Ultrastructural examinations of the sensory hair cells revealed that they had obviously not been affected by GM-treatment (no degenerative morphological features observed). Overall, the present results suggest that hair cells are not affected by GM concerning their possible role in (general) otolith growth, but that these cells indeed might have transitionally been impaired by GM resulting in a decreased capacity of regulating otolith symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号