首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modern studies now favor the fact that extraterrestrial organic molecules served as an important source of biological important substances on the primitive Earth. It is presumed that these space-made organic molecules could be transported safely to the Earth surface being associated with mineral grains. It is important to test whether nucleotides synthesized in Earth orbit could be protected by lunar surface regolite. The phosphorylation of adenosine, uridine and thymidine has been studied with respect of their further transformations and degradation in presence of mineral bed. After retrieval, HPLC analysis is used to identify all the mononucleotides of certain nucleosides. It has been shown, that exposure of the investigated nucleosides as dry films in space conditions in the presence of Lunar soil increases the yield of synthesized nucleotides in 1.1-3.0 times as compared with the exposure of the same samples in absence of Lunar soil. To identify and evaluate the principal source of energy in open space responsible for nucleotide synthesis reaction laboratory experiments were performed. It has been shown, that vacuum ultra violet (VUV 145 nm) radiation promotes nucleotide synthesis more effectively than ultra violet (UV 254 nm) while the presence of Lunar soil increases reaction yield in 1.5-2.0 times. Formation of 5'-mononucleotides seemed to be the most effective reaction both in flight and in laboratory experiments. Protective action of lunar soil on synthesized nucleotides against UV radiation has been shown in open Space conditions.  相似文献   

2.
低温环境下红外场景生成装置的标定是对低温红外目标特征评估和精准探测的前提。通过标定过程中热辐射-光子-电子转换测量的传递途径,建立基于红外热像仪灰度的低温标定模型,用最小二乘法进行拟合,得到模型中的辐射出射度响应函数和系统固有偏置。搭建了低温标定实验装置,根据热像仪对低温辐射源不同辐射出射度的测量结果,得到标定方程。分析了理论值和实际测量值的误差,在低温黑体辐射出射度9.79W/m2处,热像仪的辐射出射度误差最大,为-0.17W/m2,此时的灰度误差为-9.91DN。  相似文献   

3.
The abiogenic synthesis of pyrimidine nucleotides in solid state has been investigated. Our experiment indicates that natural nucleotides are produced in thin films prepared from nucleoside and inorganic phosphate by irradiating with vacuum ultraviolet light (VUV, lambda=100-200 nm). We have investigated the influence of the type of nucleic acids base (thymidine, cytosine, uracil) and the structure of sugar moiety (ribose or deoxyribose) on the course and yield of reaction. We compared the action of vacuum ultraviolet light with action of gamma-radiation, heat and biology significant UV (254 nm) which have been investigated earlier. The occurrence of these reaction in open space is discussed.  相似文献   

4.
对辐射测温技术的发展进行了回顾,总结了辐射测温中遇到的主要问题,分析了激光吸收法辐射测温技术的发展现状,对激光吸收法辐射测温技术的理论模型进行了公式推导,对本单位建立的实验装置及其测温结果进行了介绍。  相似文献   

5.
Sample return from small solar system objects is playing an increasingly important part in solar system exploration. Critical to such missions is a robust, simple, and economic sample collector. We have developed a collector such as this for near-Earth asteroid sample return missions that we have termed the Touch-and-Go Impregnable Pad (TGIP). The collector utilizes a silicone substrate that is pushed into the dust and gravel surface layer of the asteroid. As part of a systematic evaluation of the TGIP, we have investigated the resilience of this substrate to ionizing radiations. Several miniature versions of the collector, containing typically ∼3 g of the collection substrate, were exposed to 0.564 MeV beta particles from a 90Sr source and a 6 MeV electron beam in a linear accelerator to simulate the wide range of energies of solar and galactic ionizing radiation. Various radiation levels up to eight times greater than expected on a six-year asteroid mission (in the case of beta radiation) and 50 times greater than expected (in the case of the 6 MeV electron radiation) were administered to the substrate. After irradiation, the efficiency of the substrate in collecting samples of mock regolith was compared with that of collectors that had not been irradiated. No difference beyond experimental uncertainty was observed and we suggest that the operational TGIP will not be affected adversely by radiation doses expected during a typical six-year inner solar system mission.  相似文献   

6.
Room temperature vulcanizing (RTV)-based components have been used on Mars Pathfinder, the Mars rovers, Spirit and Opportunity, as well as the Phoenix Lander as a support matrix for pigmented panoramic camera calibration targets. RTV 655 has demonstrated superiority to other polymers due to its unique range of material properties namely mechanical stability between −115 and 204 °C and UV radiation tolerance. As a result, it has been the number one choice for many space-related missions. However, due to the high mass density and the natural tendency for electrostatic charging RTV materials have caused complications by attracting and retaining dust particles (Sabri et al., 2008). In the current project we have investigated the relevant properties of polymer-reinforced (crosslinked) silica aerogels with the objective of substituting RTV-based calibration targets with an aerogel based design. The lightweight, mechanical strength, ability to accept color pigments, and extremely low dust capture makes polyurea crosslinked aerogels a strong candidate as a chromatic standard for extraterrestrial missions. For this purpose, the reflection spectra, gravimetric analysis, and low temperature response of metal oxide pigmented, polyurea crosslinked silica aerogels have been investigated and reported here.  相似文献   

7.
Many organisms from a wide variety of taxa have the ability to survive extreme dehydration, a phenomenon called "anhydrobiosis." Concomitantly with resistance to the adverse effects of drying, these organisms are also resistant to the effects of freezing to very low temperatures, elevated temperature for brief periods, and the effects of ionizing radiation. One result of their resistance to environmental extremes is a greatly prolonged life span. The anhydrobiotes that have been investigated share a common metabolic adaptation, the production of certain disaccharides as a large proportion of their dry weight. Using these disaccharides, we have investigated the sources of damage attendant upon drying and the mechanisms by which anhydrobiotes and model systems of isolated membranes and proteins avoid damage. This report summarizes aspects of this work.  相似文献   

8.
The peculiarities and mechanisms of the mutagenic action of gamma-rays and heavy ions on bacterial cells have been investigated. Direct mutations in the lac-operon of E. coli in wild type cells and repair deficient strains have been detected. Furthermore, the induction of revertants in Salmonella tester strains was measured. It was found that the mutation rate was a linear-quadratic function of dose in the case of both gamma-rays and heavy ions with LET up to 200 keV/micrometer. The relative biological effectiveness (RBE) increased with LET up to 20 keV/micrometer. Low mutation rates were observed in repair deficient mutants with a block of SOS-induction. The induction of SOS-repair by ionizing radiation has been investigated by means of the "SOS-chromotest" and lambda-prophage induction. It was shown that the intensity of the SOS-induction in E. coli increased with increasing LET up to 40-60 keV/micrometer.  相似文献   

9.
During the early evolution of life on Earth, before the formation of a protective ozone layer in the atmosphere, high intensities of solar UV radiation of short wavelengths could reach the surface of the Earth. Today the full spectrum of solar UV radiation is only experienced in space, where other important space parameters influence survival and genetic stability additionally, like vacuum, cosmic radiation, temperature extremes, microgravity. To reach a better understanding of the processes leading to the origin, evolution and distribution of life we have performed space experiments with microorganisms. The ability of resistant life forms like bacterial spores to survive high doses of extraterrestrial solar UV alone or in combination with other space parameters, e.g. vacuum, was investigated. Extraterrestrial solar UV was found to have a thousand times higher biological effectiveness than UV radiation filtered by stratospheric ozone concentrations found today on Earth. The protective effects of anorganic substances like artificial or real meteorites were determined on the MIR station. In the experiment EXOBIOLOGIE of the French PERSEUS mission (1999) it was found that very thin layers of anorganic material did not protect spores against the deleterious effects of energy-rich UV radiation in space to the expected amount, but that layers of UV radiation inactivated spores serve as a UV-shield by themselves, so that a hypothetical interplanetary transfer of life by the transport of microorganisms inside rocks through the solar system cannot be excluded, but requires the shielding of a substantial mass of anorganic substances.  相似文献   

10.
Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.  相似文献   

11.
Understanding the balance between incoming radiation from the Sun and outgoing radiation from Earth is of critical importance in the study of climate change on Earth. As the only natural satellite of Earth, the Moon is a unique platform for the study of the disk-wide radiation budget of Earth. There are no complications from atmosphere, hydrosphere, or biosphere on the Moon. The nearside of the Moon allows for a focus on the solar radiation during its daytime, and on terrestrial radiation during its nighttime. Additionally, lunar regolith temperature is an amplifier of the terrestrial radiation signal because lunar temperature is proportional to the fourth square root of radiation as such is much more sensitive to the weak terrestrial radiation in nighttime than the strong solar radiation in daytime. Indeed, the long-term lunar surface temperature time series obtained inadvertently by the Heat Flow Experiment at the Apollo 15 landing site three decades ago may be the first important observation from deep space of both incoming and outgoing radiation of the terrestrial climate system. A revisit of the lunar surface temperature time series reveals distinct characteristics in lunar surface daytime and nighttime temperature variations, governed respectively by solar and terrestrial radiation.  相似文献   

12.
分析了空间多层打孔隔热材料中导热和辐射换热的复合传热问题,建立了关于反射屏的能量方程。结合有限差分法,提出了空间多层打孔隔热材料反射屏瞬态温度计算的模型以及内部辐射数值分析模型,空间环境作为整个模拟中的一个屏,使模型的边界条件方便处理。将该模型的预测结果与文献中相似工况下的预测值和实验值进行比较,说明了该模型在工程中应用的可行性。另一算例的计算结果说明了空间多层打孔隔热材料的瞬态温度、漏热热流变化特点以及反射屏温度分布特点。该模型为多层打孔隔热材料热结构性能研究以及优化设计提供了理论基础。  相似文献   

13.
“嫦娥三号暠月面探测器上安装的地形地貌相机工作时直接暴露在月面高温环境下,受月表红外辐射影响很大,给热控设计带来很大难题。为解决设备工作时的高温问题,在外热流分析的基础上提出了以“最佳散热位置暠为核心的热控方案,设备处于“最佳散热位置暠时能够获得较好的初始温度和最快的降温速率;另外通过把散热面布置在月表红外辐射热流最小的位置并在除散热面以外的其他表面包覆多层隔热组件这两个措施,可以最大程度减小月表红外辐射的影响。地形地貌相机在轨开机工作前的各飞行阶段遥测数据均满足存储温度指标要求并且有较大余量;开机工作环拍一周的遥测数据满足工作温度指标要求并且与热分析结果符合较好,初始温度与遥测温度数据偏差为-1灡7曟,温升速率和降温速率偏差分别为14灡9%和16灡9%。这表明该热控方案正确可行,可为后续中国深空探测类似热控问题参考。  相似文献   

14.
飞行器在大气层内高超声速飞行时,高温窗口迅速成为气动热辐射效应的主要因素,气动热辐射效应会降低甚至破坏红外(IR)探测系统的性能.通过分析红外探测窗口热辐射传输特性,提出一种红外窗口材料的热辐射特性测量方法,并测量了应用于中波红外(MWIR)探测系统的某蓝宝石红外窗口材料在高温状态下的透过率和自身辐射等热辐射数据.结果表明:在100~350℃范围内,0.1mm厚蓝宝石材料薄层在中波红外3.7~4.8μm波段的热辐射特性与温度近似呈3次方关系,温度越高,蓝宝石透过率越小,自身辐射越大.强烈的自身辐射极易导致红外探测器局部饱和现象,对探测系统造成的影响比透过率引起的信噪比(SNR)下降要大得多.   相似文献   

15.
设计并建立了用于飞行弹丸中段飞行状态实验室模拟的试验系统,测量获得了飞行弹丸的红外辐射特性.基于传热与辐射理论,分析了相关参数对实验结果的影响,获得飞行弹丸在一定飞行状态下的辐射特性变化规律.目标的初始温度和辐照条件是影响目标辐射特性的主要因素,自旋状态影响辐射特性的空间分布.试验测量与数值仿真和理论分析结果均具有很好的一致性,证明在实验室开展飞行弹丸的红外辐射特性模拟试验具有可行性.  相似文献   

16.
针对常用的圆柱型无盖黑体空腔,分别计算了在对工作波长为单波长(1μm,1.6μm)、波段(3~5)μm、(8~14)μm的辐射温度计进行校准时,由于空腔的不等温性引起的积分发射率变化对校准结果造成的辐射温度偏差。计算结果表明,黑体空腔实际存在的不等温性引起的辐射光谱偏离理想黑体辐射对校准结果造成的偏差是不容忽略的,对于每一个具体的黑体辐射空腔,都要对其不等温对校准结果的影响予以考虑。  相似文献   

17.
辐射测温中环境辐射的影响   总被引:2,自引:0,他引:2  
在辐射测温中,环境辐射对辐射测温有一定的影响。对于环境辐射的影响,不少参考资料中指出500℃以上可以忽略,经理论分析得出,是否考虑环境辐射的影响,不仅与所测温度有关,同时与辐射温度计的工作波长和所测物体的发射率有关。为了提高测温的准确性,分别对单色、比色测温中环境辐射的影响进行了分析比较。  相似文献   

18.
高分辨率立体测绘相机的光学系统及探测器的温度稳定性影响测绘相机的测绘精度。针对透射式光学系统,采用多级外热流抑制技术,使星相机透镜的温度稳定性提高了6倍;针对反射式光学系统,采用间接辐射式控温等热控技术,使主镜、次镜的温度稳定性达到±0.3℃;针对大功率电荷耦合元件(CCD),采用基于环路热管(LHP)的节能型控温技术,在满足温度指标的前提下使环路热管驱动功率的周期平均值由60 W降低至33.8 W,同时节省约40%的主冷凝器面积及质量;针对CMOS,采用两级温度波动抑制技术,使其温度稳定性达到±0.3℃。研究了地面热试验的方法,报告了测绘相机系统关键部组件在极端空间环境下的在轨数据,全面验证了热控设计方法的正确性。  相似文献   

19.
The radiation environment in space is very different from the one encountered on Earth. In addition to the sparsely ionizing radiation, there are particles of different Z with energies ranging from keV up to hundreds of GeV which can cause severe damage to both electronics and humans. It is therefore important to understand the interactions of these highly ionizing particles with different materials such as the hull of space vehicles, human organs and electronics. We have used the Particle and Heavy-Ion Transport code System (PHITS), which is a three-dimensional Monte Carlo code able to calculate interactions and transport of particles and heavy ions with energies up to 100 GeV/nucleon in most matter. PHITS is developed and maintained by a collaboration between RIST (Research Organization for Information Science & Technology), JAEA (Japan Atomic Energy Agency), KEK (High Energy Accelerator Research Organization), Japan and Chalmers University of Technology, Sweden. For the purpose of examining the applicability of PHITS to the shielding design we have simulated the ESA facility Matroshka (MTR) designed and lead by the German Aerospace Center (DLR). Preliminary results are presented and discussed in this paper.  相似文献   

20.
Vegetative cells of E. coli differing in their radiosensitivity have been used in heavy ion irradiation experiment. Besides inactivation measurements also the induction of DNA double strand breaks (DSB) have been measured using the method of pulse-field gel electrophoresis. This method allows to separate linear DNA with length up to 8 Mio base pairs. After irradiation with heavy ions we find a higher amount of low molecular weight fragments when compared to sparsely ionizing radiation. This agrees with the idea that heavy ions as a structured radiation have a high probability to induce more than one strand break in a DNA molecule if the particle hits the DNA. The amount of intact DNA remaining in the agarose plugs decreases exponentially for increasing radiation doses or particle fluences. From these curves cross sections for the induction of DSB after heavy ion irradiation have been determined. These results will be discussed in comparison to the results for cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号