首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The international Cassini/Huygens mission consists of the Cassini Saturn Orbiter spacecraft and the Huygens Titan Probe that is targeted for entry into the atmosphere of Saturn's largest moon, Titan. From launch on October 15, 1997 to arrival at Saturn in July 2004, Cassini/Huygens will travel over three billion kilometers. Once in orbit about Saturn, Huygens is released from the orbiter and enters Titan's atmosphere. The Probe descends by parachute and measures the properties of the atmosphere. If the landing is gentle, the properties of the surface will be measured too. Then the orbiter commences a four-year tour of the Saturnian system with 45 flybys of Titan and multiple encounters with the icy moons. The rings, the magnetosphere and Saturn itself are all studied as well as the interactions among them. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Clausen  K.C.  Hassan  H.  Verdant  M.  Couzin  P.  Huttin  G.  Brisson  M.  Sollazzo  C.  Lebreton  J.-P. 《Space Science Reviews》2002,104(1-4):155-189
Space Science Reviews - The Huygens Probe is the ESA-provided element of the joint NASA/ESA Cassini/Huygens mission to Saturn and its largest moon Titan. Huygens is an entry probe designed to enter...  相似文献   

5.
Wolf  Aron A. 《Space Science Reviews》2002,104(1-4):101-128
The Cassini mission to Saturn employs a Saturn orbiter and a Titan probe to conduct an intensive investigation of the Saturnian system. The orbiter flies a series of orbits, incorporating flybys of the Saturnian satellites, called the ‘satellite tour.’ During the tour, the gravitational fields of the satellites (mainly Titan) are used to modify and control the orbit, targeting from one satellite flyby to the next. The tour trajectory must also be designed to maximize opportunities for a diverse set of science observations, subject to mission-imposed constraints. Tour design studies have been conducted for Cassini over a period of several years to identify trades and strategies for achieving these sometimes conflicting goals. Concepts, strategies, and techniques previously developed for the Galileo mission to Jupiter have been modified, and new ones have been developed, to meet the requirements of the Cassini mission. A sample tour is presented illustrating the application of tour design strategies developed for Cassini. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The dual technique magnetometer system onboard the Cassini orbiter is described. This instrument consists of vector helium and fluxgate magnetometers with the capability to operate the helium device in a scalar mode. This special mode is used near the planet in order to determine with very high accuracy the interior field of the planet. The orbital mission will lead to a detailed understanding of the Saturn/Titan system including measurements of the planetary magnetosphere, and the interactions of Saturn with the solar wind, of Titan with its environments, and of the icy satellites within the magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

7.
The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the Cassini orbiter spacecraft. UVIS has two spectrographic channels that provide images and spectra covering the ranges from 56 to 118 nm and 110 to 190 nm. A third optical path with a solar blind CsI photocathode is used for high signal-to-noise-ratio stellar occultations by rings and atmospheres. A separate Hydrogen Deuterium Absorption Cell measures the relative abundance of deuterium and hydrogen from their Lyman-α emission. The UVIS science objectives include investigation of the chemistry, aerosols, clouds, and energy balance of the Titan and Saturn atmospheres; neutrals in the Saturn magnetosphere; the deuterium-to-hydrogen (D/H) ratio for Titan and Saturn; icy satellite surface properties; and the structure and evolution of Saturn’s rings.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

8.
The Huygens probe arrived at Saturn's moon, Titan, January 14,2005, unveiling a world that is radically different from any other in the solar system. The data obtained, complemented by continuing observations from the Cassini spacecraft, show methane lakes, river channels and drainage basins, sand dunes, cryovolcanos and sierras. This has led to an enormous scientific interest in a follow-up mission to Titan, using a robotic lighter-than-air vehicle (or aerobot). Aerobots have modest power requirements, can fly missions with extended durations, and have very long distance traverse capabilities. They can execute regional surveys, transport and deploy scientific instruments and in-situ laboratory facilities over vast distances, and also provide surface sampling at strategic science sites. This describes our progress in the development of the autonomy technologies that will be required for exploration of Titan. We provide an overview of the autonomy architecture and some of its key components. We also show results obtained from autonomous flight tests conducted in the Mojave Desert.  相似文献   

9.
Fulchignoni  M.  Ferri  F.  Angrilli  F.  Bar-Nun  A.  Barucci  M.A.  Bianchini  G.  Borucki  W.  Coradini  M.  Coustenis  A.  Falkner  P.  Flamini  E.  Grard  R.  Hamelin  M.  Harri  A.M.  Leppelmeier  G.W.  Lopez-Moreno  J.J.  McDonnell  J.A.M.  McKay  C.P.  Neubauer  F.H.  Pedersen  A.  Picardi  G.  Pirronello  V.  Rodrigo  R.  Schwingenschuh  K.  Seiff  A.  Svedhem  H.  Vanzani  V.  Zarnecki  J. 《Space Science Reviews》2002,104(1-4):395-431
The Huygens Atmospheric Structure Instrument (HASI) is a multi-sensor package which has been designed to measure the physical quantities characterising the atmosphere of Titan during the Huygens probe descent on Titan and at the surface. HASI sensors are devoted to the study of Titan's atmospheric structure and electric properties, and to provide information on its surface, whether solid or liquid. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The formation of Titan??s induced magnetosphere is a unique and important example in the solar system of a plasma-moon interaction where the moon has a substantial atmosphere. The field and particle conditions upstream of Titan are important in controlling the interaction and also play a strong role in modulating the chemistry of the ionosphere. In this paper we review Titan??s plasma interaction to identify important upstream parameters and review the physics of Saturn??s magnetosphere near Titan??s orbit to highlight how these upstream parameters may vary. We discuss the conditions upstream of Saturn in the solar wind and the conditions found in Saturn??s magnetosheath. Statistical work on Titan??s upstream magnetospheric fields and particles are discussed. Finally, various classification schemes are presented and combined into a single list of Cassini Titan encounter classes which is also used to highlight differences between these classification schemes.  相似文献   

11.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

12.
Raulin  François  Owen  Tobias 《Space Science Reviews》2002,104(1-4):377-394
Exobiology is not only the study of the origin, distribution and evolution of life in the universe, but also of structures — including at the molecular level, and processes — including organic chemical transformations — related to life. In that respect, with its dense nitrogen atmosphere, which includes a noticeable fraction of methane, and the many organic compounds which are present in the gas and aerosols phases, Titan appears to be a planetary object of prime interest for exobiology in the Solar system, allowing the study of chemical organic evolution in a planetary environment over a long time scale. We describe here some aspects of this extraterrestrial organic chemistry which involves many physical and chemical couplings in the different parts of what can be called ‘Titan's geofluid’ (gas phase, aerosol phases and surface solid and maybe liquid phases). The three complementary approaches which can be followed to study such chemistry of exobiological interest are considered. Those are experimental simulations in the laboratory, chemical and photochemical modeling and of course observation, using both remote sensing and in situ measurements, which is an essential approach. The Cassini-Huygens mission, that offers a unique opportunity to study in detail the many aspects of Titan's organic chemistry, is discussed and the many expected exobiological returns from the different instruments of the Cassini orbiter and the Huygens probe are considered. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Bird  M.K.  Dutta-Roy  R.  Heyl  M.  Allison  M.  Asmar  S.W.  Folkner  W.M.  Preston  R.A.  Atkinson  D.H.  Edenhofer  P.  Plettemeier  D.  Wohlmuth  R.  Iess  L.  Tyler  G.L. 《Space Science Reviews》2002,104(1-4):613-640
A Doppler Wind Experiment (DWE) will be performed during the Titan atmospheric descent of the ESA Huygens Probe. The direction and strength of Titan's zonal winds will be determined with an accuracy better than 1 m s−1 from the start of mission at an altitude of ∼160 km down to the surface. The Probe's wind-induced horizontal motion will be derived from the residual Doppler shift of its S-band radio link to the Cassini Orbiter, corrected for all known orbit and propagation effects. It is also planned to record the frequency of the Probe signal using large ground-based antennas, thereby providing an additional component of the horizontal drift. In addition to the winds, DWE will obtain valuable information on the rotation, parachute swing and atmospheric buffeting of the Huygens Probe, as well as its position and attitude after Titan touchdown. The DWE measurement strategy relies on experimenter-supplied Ultra-Stable Oscillators to generate the transmitted signal from the Probe and to extract the frequency of the received signal on the Orbiter. Results of the first in-flight checkout, as well as the DWE Doppler calibrations conducted with simulated Huygens signals uplinked from ground (Probe Relay Tests), are described. Ongoing efforts to measure and model Titan's winds using various Earth-based techniques are briefly reviewed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Largest satellite of Saturn and the only in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects. (i) Its analogies with planet Earth, in spite of much lower temperatures, with, in particular, a methane cycle on Titan analogous to the water cycle on Earth. (ii) The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the complex organic matter in Titan’s low atmosphere is mainly concentrated in the aerosol particles. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. (iii) The possible emergence and persistence of Life on Titan. All ingredients which seem necessary for Life to appear and even develop – liquid water, organic matter and energy – are present on Titan. Consequently, it cannot be excluded that life may have emerged on or in Titan. In spite of the extreme conditions in this environment life may have been able to adapt and to persist. Many data are still expected from the Cassini-Huygens mission and future astrobiological exploration mission of Titan are now under consideration. Nevertheless, Titan already looks like another world, with an active organic chemistry, in the absence of permanent liquid water, on the surface: a natural laboratory for prebiotic-like chemistry.  相似文献   

15.
In the last 25 years, the explorations of the Voyager and Galileo missions have resulted in an entirely new view of the icy worlds orbiting the giant outer planets. These objects show a huge diversity in their characteristics, resulting from their formation histories, internal processes and interactions with their space environments. This paper will review the current state of knowledge about the icy satellites and discuss the exciting prospects for the upcoming Cassini/Huygens mission as it begins a new era of exploration of the Saturn satellite system.  相似文献   

16.
Zarnecki  J.C.  Leese  M.R.  Garry  J.R.C.  Ghafoor  N.  Hathi  B. 《Space Science Reviews》2002,104(1-4):593-611
The design and performance of the Surface Science Package (SSP) on the Huygens probe are discussed. This instrument consists of nine separate sensors that are designed to measure a wide range of physical properties of Titan's lower atmosphere, surface, and sub-surface. By measuring a number of physical properties of the surface it is expected that the SSP will be able to constrain the inferred composition and structure of the moon's near-surface environment. Although the SSP is primarily designed to sense properties of the surface, some of its sensors will also make measurements of the atmosphere along the probe's entry path and will complement the data gathered by other experiments on the Huygens probe. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Saturn??s rich magnetospheric environment is unique in the solar system, with a large number of active magnetospheric processes and phenomena. Observations of this environment from the Cassini spacecraft has enabled the study of a magnetospheric system which strongly interacts with other components of the saturnian system: the planet, its rings, numerous satellites (icy moons and Titan) and various dust, neutral and plasma populations. Understanding these regions, their dynamics and equilibria, and how they interact with the rest of the system via the exchange of mass, momentum and energy is important in understanding the system as a whole. Such an understanding represents a challenge to theorists, modellers and observers. Studies of Saturn??s magnetosphere based on Cassini data have revealed a system which is highly variable which has made understanding the physics of Saturn??s magnetosphere all the more difficult. Cassini??s combination of a comprehensive suite of magnetospheric fields and particles instruments with excellent orbital coverage of the saturnian system offers a unique opportunity for an in-depth study of the saturnian plasma and fields environment. In this paper knowledge of Saturn??s equatorial magnetosphere will be presented and synthesised into a global picture. Data from the Cassini magnetometer, low-energy plasma spectrometers, energetic particle detectors, radio and plasma wave instrumentation, cosmic dust detectors, and the results of theory and modelling are combined to provide a multi-instrumental identification and characterisation of equatorial magnetospheric regions at Saturn. This work emphasises the physical processes at work in each region and at their boundaries. The result of this study is a map of Saturn??s near equatorial magnetosphere, which represents a synthesis of our current understanding at the end of the Cassini Prime Mission of the global configuration of the equatorial magnetosphere.  相似文献   

18.
The Cassini mission provides a great opportunity to enlarge our knowledge of atmospheric electricity at the gas giant Saturn. Following Voyager studies, the RPWS (Radio and Plasma Wave Science) instrument has measured again the so-called SEDs (Saturn Electrostatic Discharges) which are the radio signature of lightning flashes. Observations by Cassini/ISS (Imaging Science Subsystem) have shown cloud features in Saturn’s atmosphere whose occurrence, longitudinal drift rate, and brightness were strongly related to the SEDs. In this paper we will review the main physical parameters of the SEDs. Lightning does not only give us clues about the dynamics of the atmosphere, but also serves as a natural tool to investigate properties of Saturn’s ionosphere. We will also discuss other lightning related phenomena and compare Saturn lightning with terrestrial and Jovian lightning.  相似文献   

19.
Titan has the most significant atmosphere of any moon in the solar system, with a pressure at the surface larger than the Earth??s. It also has a significant ionosphere, which is usually immersed in Saturn??s magnetosphere. Occasionally it exits into Saturn??s magnetosheath. In this paper we review several recent advances in our understanding of Titan??s ionosphere, and present some comparisons with the other unmagnetized objects Mars and Venus. We present aspects of the ionospheric structure, chemistry, electrodynamic coupling and transport processes. We also review observations of ionospheric photoelectrons at Titan, Mars and Venus. Where appropriate, we mention the effects on ionospheric escape.  相似文献   

20.
Titan’s stratospheric ice clouds are by far the most complex of any observed in the solar system, with over a dozen organic vapors condensing out to form a suite of pure and co-condensed ices, typically observed at high winter polar latitudes. Once these stratospheric ices are formed, they will diffuse throughout Titan’s lower atmosphere and most will eventually precipitate to the surface, where they are expected to contribute to Titan’s regolith.Early and important contributions were first made by the InfraRed Interferometer Spectrometer (IRIS) on Voyager 1, followed by notable contributions from IRIS’ successor, the Cassini Composite InfraRed Spectrometer (CIRS), and to a lesser extent, from Cassini’s Visible and Infrared Mapping Spectrometer (VIMS) and the Imaging Science Subsystem (ISS) instruments. All three remote sensing instruments made new ice cloud discoveries, combined with monitoring the seasonal behaviors and time evolution throughout Cassini’s 13-year mission tenure.A significant advance by CIRS was the realization that co-condensing chemical compounds can account for many of the CIRS-observed stratospheric ice cloud spectral features, especially for some that were previously puzzling, even though some of the observed spectral features are still not well understood. Relevant laboratory transmission spectroscopy efforts began just after the Voyager encounters, and have accelerated in the last few years due to new experimental efforts aimed at simulating co-condensed ices in Titan’s stratosphere. This review details the current state of knowledge regarding the organic ice clouds in Titan’s stratosphere, with perspectives from both observational and experimental standpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号