首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extension of the monopulse technique for estimating the target azimuth in a secondary surveillance radar (SSR) is considered. The idea is to associate in pairs monopulse measurements coming from the amplitude processor (AP) at the dwell time processing level. This allows the automatic compensation of the bias errors due to the misalignments in the receiver channels, thus eliminating the necessity for periodic system calibration. This dual-pulse technique also allows for the practical use of the dot product receiver as a modification of the AP receiver. This, in turn, implies that the variance of each dual-pulse estimate is uniformly maintained at the monopulse maximum-likelihood level over the whole off-boresight angle (OBA) range  相似文献   

2.
In many monopulse radars, feedback in the angle-tracking servo system is taken to be directly proportional to the monopulse ratio. In those radars, monopulse measurements are conditioned on simultaneous occurrences of receiver sum-channel video exceeding a detection threshold: if a detection fails to occur, the measurement is ignored, and the angle-tracking servo is made to coast. Such conditioning is shown to be necessary in order that the noise power be finite in the servo feedback. The conditional mean value and conditional variance of the monopulse ratio are derived and quantified in terms of threshold level as well as signal-to-noise ratio. The formulation permits the noise covariance between receiver difference and sum channels to be complex rather than only real-valued, so that the sources of noise jamming are not required to be positioned in the receiving-antenna mainlobe and to be copolarized with the antenna response there. Nonfluctuating and Rayleigh-fluctuating target cases are considered and compared, and fluctuation loss is quantified  相似文献   

3.
The problem of tracking targets in the presence of reflections from sea or ground is addressed. Both types of reflections (specular and diffuse) are considered. Specular reflection causes large peak errors followed by an approximately constant bias in the monopulse ratio, while diffuse reflection has random variations which on the average generate a bias in the monopulse ratio. Expressions for the average error (bias) in the monopulse ratio due to specular and diffuse reflections and the corresponding variance in the presence of noise in the radar channels are derived. A maximum maneuver-based filter and a multiple model estimator are used for tracking. Simulation results for five scenarios, typical of sea skimmers, with Swerling III fluctuating radar cross sections (RCSs) indicate the significance and efficiency of the technique developed in this paper-a 65% reduction of the rms error in the target height estimate.  相似文献   

4.
Detection of Target Multiplicity Using Monopulse Quadrature Angle   总被引:1,自引:0,他引:1  
The feasibility of using the indicated quadrature angle of arrival of a monopulse radar to discriminate a single target from multiple targets, separated in angle within a radar resolution cell, is investigated. The analysis is performed for steady (fixed) and Rayleigh fluctuating targets which cover a broad range of target characteristics. In both cases, the interfering signals due to noise and clutter in the sum and difference monopulse channels are assumed to be independent, zero-mean Gaussian processes. Detection and false alarm probabilities are evaluated analytically and the receiver operating characteristics are obtained for both fixed and fluctuating target cases. It is shown that multiple targets can be discriminated from a single target condition by integrating the indicated monopulse quadrature angle of arrival from several independent pulses. It is also shown that the probability of detecting multiple targets increases as the fluctuation in the target radar cross section decreases, approaching the fixed amplitude case in the limit.  相似文献   

5.
The classical detection step in a monopulse radar system is based on the sum beam only,the performance of which is not optimal when target is not at the beam center. Target detection aided by the difference beam can improve the performance at this case. However, the existing difference beam aided target detectors have the problem of performance deterioration at the beam center, which has limited their application in real systems. To solve this problem, two detectors are proposed in this paper. Assuming the monopulse ratio is known, a generalized likelihood ratio test(GLRT) detector is derived, which can be used when targeting information on target direction is available. A practical dual-stage detector is proposed for the case that the monopulse ratio is unknown. Simulation results show that performances of the proposed detectors are superior to that of the classical detector.  相似文献   

6.
Angle-measurement error of a coherent monopulse radar signalresulting from imbalances between in-phase and quadraturecomponents, as well as between sigma and delta channels, arecorrected in a simple procedure. No correction is needed for I,Qimbalances in the time domain [1]. Instead, a postintegrationcorrection is performed. This reduces the number of calibrationoperations of the monopulse signal by a factor X, 2 ? X ? N (N isthe number of DFT samples), depending on the degree of filtering.It also reduces the number of numerical operations necessary forthe production of the correction term by a factor of three. A firstorderrder estimation is made of the residual error after correction, dueto bias and image sidelobes.  相似文献   

7.
季节 《航空学报》1981,2(1):87-94
 本文总结机载雷达中单脉冲技术的研究和应用,着重讨论幅度比较系统的关键技术,给出有关数据。 机载雷达中的单脉冲技术着眼于抗干扰性能和特殊应用。这些应用包括空对地测距、角分辨力改进、地形防撞。本文阐述了这些特殊应用。  相似文献   

8.
将空域广义单脉冲测角算法扩展至空时二维,提出基于降维STAP的自适应单脉冲测角算法,通过实时自适应修正鉴角曲线来降低角误差,实现杂波环境下的目标角误差估计,并且计算复杂度较低,从而保证机载平台在强杂波环境下对目标的稳定跟踪.仿真结果验证了该方法的有效性与性能优势.  相似文献   

9.
Monopulse Radars Excited by Gaussian Signals   总被引:1,自引:0,他引:1  
This paper presents the theoretical probability densities of the outputs of both an amplitude-comparison monopulse radar and a phase-comparison monopulse radar when the monopulse radars are excited by Gaussian signals plus Gaussian noises. These probability densities are useful for studying the responses of monopulse radars to noise excitations. For example: Noise excitations arise when the monopulse radars are ?viewing? a noise source or a radar target consisting of randomly moving scatterers. The probability densities also serve as useful approximations for characterizing the outputs of monopulse radars when sinusoidal signals plus Gaussian noises excite the monopulse radars. Some special cases of the probability densities are presented in graphs.  相似文献   

10.
This paper presents the concept, theory of operation, characteris tic equations, and error analysis of four wide-band monopulse techniques. The basic techniques described, which include pure amplitude monopulse, phase and amplitude monopulse (two-and three-channel configurations), and pure phase monopulse interferometer, are particularly applicable to monopulse direction finding systems that require frequency coverage over several octaves and open-loop angle bearing of several degrees. Sufficient detail and working formulas are included to permit a trade-off analysis to be made between the direction-finding techniques for selection in specific hardware applications.  相似文献   

11.
周亮  孟进  吴灏  刘永才  刘伟 《航空学报》2019,40(8):322755-322755
交叉眼干扰被认为是对单脉冲雷达干扰最有效的方式之一。基于雷达方程建立了隔离平台回波下的两点源反向交叉眼干扰模型,推导了交叉眼干扰欺骗角一般性公式,研究了干扰机发射天线间距、干扰平台旋转角和干扰机相对雷达之间距离等参数变化对角度欺骗效果的影响,并依据单脉冲雷达接收机获取角度的信息处理流程,建立了单脉冲雷达接收机仿真模型,对交叉眼数学模型的正确性和局限性进行了分析。研究结果表明:单脉冲雷达越靠近两点源交叉眼干扰机中心线、干扰机两发射天线间距越大、与干扰机距离越近时,角度欺骗效果越好;单脉冲雷达的欺骗角度随着与干扰机距离的接近呈指数式增大;数学模型和仿真模型计算的单脉冲雷达角度误差最大值随干扰机天线与雷达天线中心连线的夹角的增大呈指数化增长。研究可为交叉眼干扰工程设计作参考。  相似文献   

12.
Ambiguities in interferometers with high angular accuracy must be resolved to achieve a practical system design. A new technique for ambiguity resolution is described and is based on monopulse circuitry used with the interferometric elements. The overall angular accuracy of the system is achieved by the interferometer; the angular accuracy of the monopulse subsystem is used to resolve interferometric ambiguities. An expression for the probability of correct ambiguity resolution is derived as a function of element size and monopulse accuracy which indicates that high probability of ambiguity resolution results when the size of the interferometric elements are a fraction of the interferometric baseline. Finally, a comparison between conventional monopulse and interferometric system designs is made for the three principal parameters, signal sensitivity, angular accuracy, and field of view, that dictate the appropriate choice for a particular application. Interferometric systems are more appropriate than monopulse systems for those applications in which angular accuracy and field of view are more important than signal sensitivity.  相似文献   

13.
Expressions are provided for the accuracy of monopulse angle estimation using two beams. It is shown that, if the signal angle is halfway between the angles of the beams, the Cramer-Rao lower bound (CRLB) for monopulse processing is almost as small as the CRLB obtained if the entire array of sensors is used. The monopulse CRLB is considerably poorer if the angle of the signal is equal to that of one of the two beams. The expressions in this correspondence are for a uniformly weighted linear array of M equally spaced sensors, for which N⩾M beams are formed  相似文献   

14.
A new technique is described which provides for precision angle tracking of celestial radio sources with a conventional monopulse antenna receiving system. It is shown that this technique is readily adapted to angle tracking radars. The features of conventional monopulse operation are preserved while permitting precise angle tracking of noise sources when signal to noise ratios are much less than unity. Measurements, using a four-horn monopulse feed with a 28-foot parabolic reflector and a "monopulse radiometer" produced the characteristic monopulse angle detection functions when using the sun, the moon, and Cassiopeia A as boresight reference sources. Precision measurements were made to 8 arc second under varying weather conditions using 28-foot radio astronomy antennas. The accuracy of the measurements were limited by the antenna angle encoders, consequently no conclusions are drawn with regard to the absolute accuracy of the measurements. The celestial coordinates of four discrete radio sources and the equations for coordinate transformation to local elevation and azimuth are contained in the Appendixes.  相似文献   

15.
A 136-MHz to 10-GHz simultaneous-lobing monopulse receiving system, utilizing polarization diversity in both coherent (phase-lock) and noncoherent (nonphase-lock) operational modes, has been developed for the National Aeronautics and Space Administration (NASA) Space Tracking and Data Acquisition Network (STADAN). This sum-and-difference monopulse system, called APDAR (Advanced Polarization Diversity Autotrack Receiver), utilizes a maximalratio polarization diversity combining technique that matches the receiving antenna polarization to the incoming variable polarization from a spin-stabilized or tumbling satellite. Autotrack performance becomes independent of the incoming polarization orientation by continuous in-phase addition of the carrier-signal components from orthogonal antenna elements. This technique relies upon the principle that fading does not occur simultaneously on oppositely polarized receiving channels. APDAR results in improved autotrack performance by eliminating adverse effects of severe (over 30-dB) cross-polarization fading. The predetection diversity combining technique employed provides an average 3-dB signal-to-noise (SNR) improvement. This paper describes a series of 136-MHz satellite tracking tests and analyzes a maximal-ratio predetection diversity combiner, a three-loop phase-lock loop system, and a frequency-switched radiometer.  相似文献   

16.
The conditional probability density function (pdf) is developed for each monopulse measurement of a Rayleigh target by conditioning the pdf of the complex monopulse ratio on the measured amplitude of the sum signal. The conditional pdf is used to develop the conditional Cramer-Rao Lower Bound (CRLB) for any unbiased estimator of the direction-of-arrival (DOA). Conditional maximum likelihood (CML) and conditional method of moments (CMM) estimators of the DOA are developed along with estimates of the variances associated with the monopulse ratio and DOA estimate. Using simulation results, the performances of the CML and CMM estimators of the DOA are compared with the performance of standard monopulse ratio and the performances of the variance estimators are also studied  相似文献   

17.
Maximum likelihood angle extractor for two closely spaced targets   总被引:2,自引:0,他引:2  
In a scenario of closely spaced targets special attention has to be paid to radar signal processing. We present an advanced processing technique, which uses the maximum likelihood (ML) criterion to extract from a monopulse radar separate angle measurements for unresolved targets. This processing results in a significant improvement, in terms of measurement error standard deviations, over angle estimators using the monopulse ratio. Algorithms are developed for Swerling I as well as Swerling III models of radar cross section (RCS) fluctuations. The accuracy of the results is compared with the Cramer Rao lower bound (CRLB) and also to the monopulse ratio technique. A novel technique to detect the presence of two unresolved targets is also discussed. The performance of the ML estimator was evaluated in a benchmark scenario of closely spaced targets - closer than half power beamwidth of a monopulse radar. The interacting multiple model probabilistic data association (IMMPDA) track estimator was used in conjunction with the ML angle extractor  相似文献   

18.
以某型单脉冲测量雷达为研究对象,深入分析研究幅相一致性修正的必要性和修正原理,通过理论分析与公式推导,经过大量的试验验证,提出一种基于目标模拟的单脉冲测量雷达无塔幅相修正方法。该方法实现后,已成功应用于该型单脉冲测量雷达,解决了传统幅相修正方法受外界因素影响大的技术难题,同时降低了建造成本和维护难度,取得了良好的军事和经济效益。  相似文献   

19.
In the presence of sea-surface multipath monopulse radar signals from a low elevation target have three alternative paths in addition to the direct (radar-to-target) path due to reflections from the sea surface. The specular reflection causes significant signal fading. The diffuse reflection causes an approximately constant bias to the in-phase component of the monopulse ratio, which is the standard extractor of the direction of arrival (DOA) in the monopulse processing. The diffuse reflection also causes higher standard deviation to the in-phase component of the monopulse ratio. We propose a maximum likelihood (ML) angle extraction technique for low elevation targets of known average signal strength having a Rayleigh fluctuation. The results show that this method reduces the error of the estimated angle compared with the conventional monopulse ratio estimator. Subsequently, the ML angle extractor is modified for the unknown average signal strength case. This modified angle extractor has only a small performance degradation compared with the known average signal strength case, but it performs much better than the monopulse ratio based estimator. An algorithm to calculate the accuracy of the estimated angle (or height) is also presented. This angle extractor reduces the root-mean-square error (RMSE) by more than 50% in the signal processing stage when used in a low flying target tracking scenario. The same algorithm can be used to track sea skimmers.  相似文献   

20.
In modern secondary surveillance radar (SSR) the monopulse technique is currently introduced for the measurement of the azimuth of the targets. The monopulse technique is based on a suitable processing of signals received by a multiple antenna. In SSR the signals are generated by a transponder on the aircraft as replies to interrogations from ground equipment, and consist of trains of pulses. The monopulse measurements can be carried out on the basis of a single pulse from each train, so that it provides a great number of azimuth estimates. Many monopulse measurement devices exist, corresponding to different processing techniques. From the point of view of accuracy and precision, their behaviors differ with respect to the sources of errors, both internal (noise and imperfect calibrations) and external (interference and propagation effects). The four main types of monopulse receivers are analyzed here with respect to the effects of the internal error sources on the resulting measurement accuracy. After an introductory discussion of the performances of the receivers, a detailed analysis is carried out on the basis of a general mathematical model. The results are given in an analytical form and in some comprehensive diagrams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号