首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is difficult to obtain a large input/output voltage ratio with a DC-DC converter, because the duty factor d may not reach very small values. For the same reason, it is difficult to obtain an output voltage that is adjustable in a large range. A DC-DC converter circuit is proposed that overcomes this limitation by performing a voltage ratio d2/(1-d) in the best operating mode. Circuit operation is analyzed, operating modes are evidenced, and the voltage ratio is deduced in each operating mode as a function of output current, duty factor, and circuit component values. Boundary conditions between different operating modes are obtained; consequently, it is concluded that these conditions do not occur for some operating modes. Component ratings are summarized, to facilitate circuit design. The buck-flyback DC-DC converter is very suitable for low-voltage (e.g. computer) power supplies and for power supplies with the output voltage (adjustable in a large range) supplied from the mains without a mains voltage transformer  相似文献   

2.
Battery charger design for the Columbus MTFF power system   总被引:1,自引:0,他引:1  
A novel pulsewidth-modulated (PWM) dc-dc converter topology is proposed for the battery charge regulator (BCR) of the Columbus Man-Tended Free-Flyer (MTFF) power system. The system is a regulated bus system. Bus voltage control is implemented at the input of the BCR. The use of a conventional buck topology with PWM conductance control at the input results in a second-order behavior. A study of new PWM dc-dc converter topologies has been made to attain a suitable topology. The proposed converter topology is designed and a breadboard including the control loop has been built and tested. The experimental results show that the converter operates according to the design constraints.  相似文献   

3.
A new class of AC/DC converter topologies (Type-1 converters) is described, suitable for use in an advanced single-phase sine-wave voltage, high-frequency power distribution system, of the type that was proposed for a 20 kHz Space Station primary electrical power distribution system. The converter comprises a transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input AC voltage source is converted into a sinusoidal current source using the resonant network. The output of this current source is rectified by the diode rectifier and is controlled by the current controller. The controlled rectified current is then filtered by the output filter to obtain a constant voltage across the load. Three distinct converter topologies, Type-1A, Type-1B, and Type 1-C, are described, and their performance characteristics are presented. All three types have a close-to-unity rated power factor (greater than 0.98), low total harmonic distortion in input current (less than 5%), and high conversion efficiency (greater than 96%)  相似文献   

4.
A new soft-switched ac-dc single-stage pulse width modulation (PWM) full-bridge converter is proposed. The converter operates with zero-voltage switching (ZVS), fixed switching frequency, and with a continuous input current that is sinusoidal and in phase with the input voltage. This is in contrast with other ac-dc single-stage PWM full-bridge converters that are either resonant converters operating with variable switching frequency control and high conduction losses, converters whose switches cannot operate with ZVS, or converters that cannot perform power factor correction (PFC) unless the input current is discontinuous. All converter switches operate with soft-switching due to a simple auxiliary circuit that is used for only a small fraction of the switching cycle. The operation of the converter is explained and analyzed, guidelines for the design of the converter are given, and its feasibility is shown with results obtained from an experimental prototype.  相似文献   

5.
Single-phase grid-connected PV system using three-arm rectifier-inverter   总被引:1,自引:0,他引:1  
A grid-connected photovoltaic (PV) power supply system with on-line voltage regulation capability is presented. It employs the three-arm rectifier-inverter topology with PV modules connected directly on the dc-link. The common-arm is with line-frequency switching and synchronous to the input voltage, aiming for a lower switching loss and decoupling the control of rectifier and inverter portions. As a result, the rectifier and inverter portions can be controlled independently with the rectifier-arm and inverter-arm, respectively. For maximum power point tracking (MPFF) of the PV modules and balancing the power among utility, PV, and the load, a variable dc-link voltage is adopted and controlled by the rectifier-arm based on the MPPT control algorithm. The inverter-arm then regulates the load voltage with good regulation and low distortion. Due to large variation of the dc-link voltage, a feedforward plus feedback control technique with variable gain is developed to keep constant bandwidth of the current loop at any operation condition. Therefore, the performance of the rectifier and inverter portions can be ensured. A system containing a 2 kVA converter and a 1.2 kW PV module is set up, and some experimental results are provided for demonstrating the effectiveness of the proposed method.  相似文献   

6.
提出了一种PWM斩控式机场助航灯恒流调光源设计方案。应用PWM控制的AC/AC降压变换器,对负载电压进行调节,从而获得高质量和稳定的正弦负载电流。1kVA样机实验结果表明,采用该方案所设计的恒流调光源在输入电压波动和负载变化时均可以实现稳定的正弦负载电流,能够满足民用机场行业标准中对助航灯恒流调光电源的技术要求。  相似文献   

7.
Switch-mode DC-to-AC inverters using DC-to-DC converter topology have many advantages over the traditional bridge-type inverter. A bidirectional power circuit combined with a nonlinear robust control is proposed to form a high performance inverter. The output voltage of the inverter can be stabilized regardless of large changes in input voltage and output current. The distortion near the zero crossing point can be minimized. The load of the inverter can be resistive, inductive, or capacitive. Simulation results and experimental verification are provided  相似文献   

8.
A three-phase neutral point clamped (NPC) converter is presented for power factor correction and dc-link voltage regulation. A simplified space vector pulsewidth modulation scheme (SVPWM) is adopted to track line current commands. Using a simplified SVPWM algorithm, the calculated time for the time duration of voltage vector is reduced. The adopted NPC converter has less power switches compared with the conventional three-level NPC converter. Only eight power switches and four clamping diodes with voltage stress of half the dc bus voltage are used in the circuit configuration. Based on the proposed control algorithm, a reference voltage vector is generated on the ac terminal for drawing the sinusoidal line currents with unity power factor. Computer simulation and experimental results based on a laboratory prototype are presented to verify the validity and effectiveness of the proposed control strategy.  相似文献   

9.
与传统的Buck电路相比,基于H桥并联的DC/DC变换器可以实现电压的双极性输出和故障时的冗余控制,非常适合用于大功率电动机正反转控制的场合。分析了并联H桥型DC/DC变换器的结构组成和双脉宽调制(PWM)模式。为了降低双脉宽调制下H桥型DC/DC变换器的开通和关断损耗,对无源软开关技术进行了分析,重点探讨了RCD缓冲电路和最小应力缓冲电路之间的性能差异,指出最小应力软开关技术可以获得更好的软开关性能,并就将其用于双脉宽调制下的并联H桥DC/DC变换器进行了仿真研究。仿真结果表明:最小应力软开关技术用于双脉宽调制下并联H桥DC/DC变换器时,可以实现开关管的零电压开通和零电流关断。  相似文献   

10.
A new single-phase high power factor rectifier is proposed, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-current-switching PWM (ZCS-PWM) auxiliary circuit is configured in the presented ZCS-PWM rectifier to perform ZCS in the switches and zero-voltage-switching (ZVS) in the diodes. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZCS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path and the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Seven transition states for describing the behavior of the ZCS-PWM rectifier in one switching period are described. The PWM switch model is used to predict the system performance. A prototype rated at 1 kW, operating 60 kHz, with an input ac voltage of 220 V/sub rms/ and an output voltage 400 V/sub dc/ has been implemented in laboratory. An efficiency of 97.2% and power factor near 0.99 has been measured. The analysis and design of the control circuitry are also presented.  相似文献   

11.
A dynamically robust current control method to synthesize a sinusoidal input current for AC-to-DC converters with boost type topology is presented. Under this control strategy, the inductor current and the diode current of the boost converter are fed back and combined in a special way which makes the input current of the AC-to-DC converter stable and robust. The input current is solely determined by the reference current. When the reference current signal is derived from the sinusoidal input voltage, the input current is sinusoidal and in phase with the input voltage. Theoretical analysis is first provided. Small signal analysis shows that the current loop is inherently stable and has a fast dynamic response. Large signal analysis reveals that the control system is not affected by large disturbances in supply voltage or output load. Computer simulations have been carried out and experimental prototype models have been built to verify the analysis and demonstrate the feasibility of the control strategy. A power factor of 0.998 and a total harmonic distortion (THD) of 3.18% are measured.  相似文献   

12.
Sundstrand Advanced Technology Corporation The current injection equivalent circuit approach (CIECA) to modeling switching converter power stages is extended to model the current programmed converter power stages operating in fixed frequency, continuous inductor conduction mode. To demonstrate the method, modeling is carried out for the buck, boost, and buckboost converters to obtain small-signal linear equivalent circuit models which represent both input and output properties. The results of these analyses are presented in the form of linear equivalent circuit models as well as transfer functions. Though current programmed converters exhibit single-pole response, the addition of artificial ramp changes converters to exhibit well damped two-pole response. This has been investigated for the first time using CIECA. The results of these analyses are presented in the form of linear equivalent circuit models as well as transfer functions.  相似文献   

13.
The characteristics of a push-pull parallel resonant converter (PPRC) when operated as a DC-DC transformer were investigated theoretically and experimentally. In the DC-DC transformer region, the voltage transfer ratio of the PPRC was found to be practically constant and independent of the input voltage and load. In this mode, all the switching elements operate in the zero voltage switching (ZVS) condition. Another important feature of the proposed DC-DC transformer is the ability to drive it by an arbitrary switching frequency, provided that the latter is lower than the self-oscillating frequency. This permits the synchronization of the converter to a master clock. The analytical expressions for voltage and current stresses, as well as the other key parameters derived, are applied to develop design guidelines for the DC-DC transformer. The proposed topology was tested experimentally on a 100-W unit which was run in the 200-kHz frequency region  相似文献   

14.
The performance of the half-bridge (HB) zero-current-switched (ZCS) quasi-resonant converter (QRC) and zero-voltage-switched (ZVS) multiresonant converter (MRC) is compared with respect to their efficiency, input voltage range, semiconductor stresses, power density, and reliability. The efficiency of the HB ZVS-MRC at a given nominal input is shown to be highly dependent on the range of the input voltage, and it suffers when the converter has to be designed to cover a wide range. However, this is not the case for the HB ZCS-QRC. Experimental versions of the HB ZCS-QRC and HB ZVS-MRC were designed for the input voltage range from 150 to 350 V and a maximum output power of 100 W, under the same constraints, to facilitate their comparison  相似文献   

15.
《中国航空学报》2023,36(7):420-429
In this paper, a fault-tolerance wide voltage conversion gain DC/DC converter for More Electric Aircraft (MEA) is proposed. The proposed converter consists of a basic Cuk converter module and n expandable units. By adjusting the operation state of the expandable units, the voltage conversion gain of the proposed converter could be regulated, which makes it available for wide voltage conversion applications. Especially, since mutual redundancy can be realized between the basic Cuk converter module and the expandable units, the converter can continuously work when an unpredictable fault occurs to the fault-tolerant parts of the proposed converter, which reflects the fault tolerance of the converter and significantly improves the reliability of the system. Moreover, the advantages of small input current ripple, automatic current sharing and low voltage stress are also integrated in this converter. The working principle and features of the proposed converter are mainly introduced, and an experimental prototype with 800 W output power has been manufactured to verify the practicability and availability of the proposed converter.  相似文献   

16.
A single-phase power factor preregulator to improve the power quality in the input side of an ac/dc/ac converter and a random pulsewidth modulation (PWM) to reduce the emitted noise energy and the mechanical vibration for an induction motor drive is proposed. The hysteresis current control (HCC) technique for a voltage source switching mode rectifier (SMR) is adopted. A control scheme is presented such that the line current is driven to follow the reference current which is derived from the dc bus voltage regulator and the output power estimator. A random pulse position technique for a three-phase voltage source inverter system to reduce the noise energy and resonant vibration from ac machine drive is described. By randomly varying the instantaneous pulse position in each switching frequency, the frequency distribution of harmonics is spread in a wide frequency range which results in reduction of torque pulsations in the ac motor drive systems. To investigate the proposed control scheme, experimental tests based on a laboratory prototype were implemented to show the nearly unity power factor at the SMR and reduce the noise energy concentrated at the specific tones  相似文献   

17.
Robust model following control of parallel buck converters   总被引:1,自引:0,他引:1  
A robust model-following (RMF) control technique for average current mode controlled (ACC) parallel buck dc-dc converters, RMFACC, is presented. RMFACC achieves that the loop gain of the voltage loop is little sensitive to the variation of power stage parameters: number of modules, input voltage, load, and component tolerances. The design of the voltage loop is 'decoupled' from the design of the disturbance rejection transfer functions in an important degree, so that the output impedance and audio susceptibility are greatly reduced without the need of high loop gain crossover frequencies. A comparative study between conventional ACC and RMFACC is shown.  相似文献   

18.
A buck converter operating at constant switching frequency, whose active switches and recovery diode commutate at zero-voltage-switching (ZVS), with zero capacitive turn-on losses, is proposed. By using the parasitic capacitances of the switches as resonant capacitors, multiresonance is created. The resonant stage takes place only after the resonant inductor has been discharged, thus avoiding a resonant current peak; the devices are subjected to the same stresses as their counterparts in conventional hard-switching converters. A high efficiency is obtained.  相似文献   

19.
A new design technique of the input filter damping network for dc-to-dc switching converters of buck type is presented. This technique is derived by means of zero dynamics analysis of the switching converter and yields equivalent results to those obtained using the classical approach based on minimizing the filter output impedance. The new method can be applied in converters of buck type with two inductors, boost with two inductors and dual SEPIC. Simulation and experimental results corresponding to a boost converter with two inductors illustrate the procedure.  相似文献   

20.
针对矩阵变换器电压传输比低和其励磁的双馈风力发电系统(DFIG)易受非正常输入波动影响的不足,提出了一种适用于DFIG励磁的Z-源稀疏矩阵变换器系统。利用Z-源的升压特性来提高电压传输比,检测电容电压实现对直通因子的自动调节,从而实现对网侧波动的自动抑制。建立了系统数学模型,推导了DFIG系统定子磁场定向矢量控制策略表达式,搭建试验样机对所提方案进行试验验证,在亚同步、同步、超同步三种发电状态下的波形和并网试验结果验证了方案的可行和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号