首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sounding rockets and satellites have discovered a large variety of plasma waves within the Earth's magnetosphere—geospace. These waves are found over a frequency range of millihertz to megahertz. The frequency ranges are generally associated with characteristic frequencies such as the plasma frequency and gyrofrequency. Most waves are generated by hot or streaming magnetospheric plasma; some waves are due to lightning discharges, to intentional man-made transmitters or to incidental radiation from power transmission systems. Propagation of waves from the observation region back to a probable source region can be modelled using ray tracing techniques in a model magnetosphere where the electron number density, ion composition and magnetic field vector is specified. Information in addition to the common amplitude-frequency-time spectrograms can be obtained from the received waves using multiple antennas and receivers. Cross-correlation of the wave electric and magnetic components can provide information on the wave polarization and direction of propagation and on the wave distribution function.  相似文献   

3.
The visual aurora takes on a variety of forms. Aurora has a tendency to appear first as very thin, highly structured forms. Over time, these tend to diffuse creating much thicker forms. It is suggested that the extreme variety of auroral forms can be understood in terms of one acceleration mechanism to produce a narrow, field-aligned beam and another process that scatters electrons into trapped orbits. The scattering is due to beam- plasma interactions that generate waves on the upper-hybrid resonance curve. These waves are effective in scattering electrons from parallel to perpendicular directions. The diffuse forms are therefore caused by precipitation of quasi-trapped electrons that have drifted from the field lines on which they were accelerated. Electrons scattered into trapped orbits may also constitute the seed population for the electron radiation belts. It is also suggested that the electron beams are accelerated by inertial Alfven waves that propagate current filaments from the turbulent region in the near-Earth plasma sheet to the auroral zone ionosphere. Electrons can be accelerated by becoming trapped in inertial Alfven waves whose phase velocity increases as they propagate toward the Earth. Specific numerical simulations that could give substance to these suggestions are proposed.  相似文献   

4.
The emission mechanisms for solar radio bursts   总被引:1,自引:0,他引:1  
Emission mechanisms for meter- solar radio bursts are reviewed with emphasis on fundamental plasma emission.The standard version of fundamental plasma emission is due to scattering of Langmuir waves into transverse waves by thermal ions. It may be treated semi-quantitatively by analogy with Thomson scattering provided induced scattering is unimportant. A physical interpretation of induced scattering is given and used to derive the transfer equation in a semi-quantitative way. Solutions of the transfer equation are presented and it is emphasized that standard fundamental emission with brightness temperatures 109 K can be explained only under seemingly exceptional circumstances.Two alternative fundamental emission mechanisms are discussed: coalescence of Langmuir waves with low-frequency waves and direct conversion due to a density inhomogeneity. It is pointed out for the first time that the coalescence process (actually a related decay process) can lead to amplified transverse waves. The coalescence process saturates when the effective temperature T t of the transverse waves reaches the effective temperature T l of the Langmuir waves. This saturation occurs provided the energy density in the low-frequency waves exceeds a specific value which is about 10-9 of the thermal energy density for emission from the corona at 100 MHz. It is suggested that direct emission has been dismissed as a possible alternative without adequate justification.Second harmonic plasma emission is discussed and compared with fundamental plasma emission. It also saturates at T t T l , and this saturation should occur in the corona roughly for T l 1015 K. If fundamental plasma emission is attributed to coalescence with low-frequency waves, then for T l 1015 K the brightness temperatures at the two harmonics should be equal and equal to T l . This offers a natural explanation for the approximate equality of the two brightness temperature often found in type II and type III bursts.Analytic treatments of gyro-synchrotron emission are reviewed. The application of the mechanism to moving type IV bursts is discussed in view of bursts with 1010 K at 43 MHz.  相似文献   

5.
The question of how low-frequency radio emissions in the outer heliosphere might be generated is considered. It is argued that the free energy contained in an electron beam distribution is first transformed into electrostatic Langmuir waves. The nonlinear interactions of these waves which can produce electromagnetic waves are then treated in the semi-classical formalism. Comparison of the results of the discussed model with electromagnetic radiation coming from upstream of the Earth's bow shock shows that the model adequately explains the generation of plasma waves at planetary shocks. By analogy, this model can provide a quantitative explanation of intensity of radio emissions at 2 to 3 kHz detected by the Voyager plasma wave instrument in the outer heliosphere provided that the electron beams generating Langmuir waves exist also in the postshock plasma due to secondary shocks in the compressed solar wind beyond the termination shock. The field strength of Langmuir waves required to generate the second harmonic emissions are approximately of 100–200 V m–1 for the primary and 50–100 V m–1 for the secondary foreshocks. However, only in the secondary foreshock the expected density is consistent with the observed frequency.  相似文献   

6.
7.
In this paper we present an initial survey of results from the plasma wave experiments on the ISEE-1 and -2 spacecraft which are in nearly identical orbits passing through the Earth's magnetosphere at radial distances out to about 22.5R e . Essentially every crossing of the Earth's bow shock can be associated with an intense burst of electrostatic and whistler-mode turbulence at the shock, with substantial wave intensities in both the upstream and downstream regions. Usually the electric and magnetic field spectrum at the shock are quite similar for both spacecraft, although small differences in the detailed structure are sometimes apparent upstream and downstream of the shock, probably due to changes in the motion of the shock or propagation effects. Upstream of the shock emissions are often observed at both the fundamental, f - p , and second harmonic, 2f p - , of the electron plasma frequency. In the magnetosphere high resolution spectrograms of the electric field show an extremely complex distribution of plasma and radio emissions, with numerous resonance and cutoff effects. Electron density profiles can be obtained from emissions near the local electron plasma frequency. Comparisons of high resolution spectrograms of whistler-mode emissions such as chorus detected by the two spacecraft usually show a good overall similarity but marked differences in detailed structure on time scales less than one minute. Other types of locally generated waves, such as the (n+1/2)f - g electron cyclotron waves, show a better correspondence between the two spacecraft. High resolution spectrograms of kilometric radio emissions are also presented which show an extremely complex frequency-time structure with many closely spaced narrow-band emissions.  相似文献   

8.
Langmuir waves and turbulence resulting from an electron beam-plasma instability play a fundamental role in the generation of solar radio bursts. We report recent theoretical advances in nonlinear dynamics of Langmuir waves. First, starting from the generalized Zakharov equations, we study the parametric excitation of solar radio bursts at the fundamental plasma frequency driven by a pair of oppositely propagating Langmuir waves with different wave amplitudes. Next, we briefly discuss the emergence of chaos in the Zakharov equations. We point out that chaos can lead to turbulence in the source regions of solar radio emissions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The magnetic field and plasma data from the ISEE 1, 2, and 3 spacecraft have greatly increased our knowledge of the quasi-parallel collisionless shock in space. Hybrid-code simulations have provided us with valuable insights into the physics of the quasi-parallel shock. Unfortunately, theoretical understanding of the nonlinear physics of the quasi-parallel shock is still in a qualitative stage of development. Generation of large-amplitude whistler waves and hydromagnetic waves observed in the quasi-parallel shock has been discussed either in terms of linear instabilities or qualitative nonlinear arguments. It appears that the ion reflection, ion heating, and leakage of the shock-heated downstream ions at the quasi-parallel shock can all be explained in terms of nonadiabatic scatterings of ions by the large-amplitude whistler-magnetosonic waves with frequencies near the ion gyrofrequency and wavelength near the ion inertial length. The nonadiabatic scattering is defined by the non-conservation of the magnetic moment. Future study of the quasi-parallel shock should focus on developing quantitative theoretical models for the nonlinear physical processes fundamental to the quasi-parallel shock.  相似文献   

10.
A high frequency electromagnetic pump wave transmitted into the ionospheric plasma from the ground can stimulate electromagnetic radiation with frequencies around that of the ionospherically reflected pump wave. The numerous spectral features of these stimulated electromagnetic emissions (SEE) and their temporal evolution on a wide range of time scales are reviewed and related theoretical, numerical, and simulation results are discussed. On long (thermal) time scales the SEE constitutes a self-organization of the ionospheric plasma which depends on the interaction of nonlinear processes in a hierarchy of time scales in response to the electromagnetic pumping. Particularly, the appearance of the rich SEE spectrum is associated with the slow self-structuring of the plasma density into a spectrum of magnetic field-aligned density striations. The dependence of the SEE on electron gyroharmonic effects and the presence of density striations suggests that the existence of a magnetic field in the plasma is important for plasma turbulence to dissipate into non-thermal electromagnetic radiation during the long time quasi-stationary state of the turbulence evolution.  相似文献   

11.
In this paper we review the possible mechanisms for production of non-thermal electrons which are responsible for the observed non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We first give a brief review of acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We also outline how the effects of the turbulence can be accounted for. Using a generic model for turbulence and acceleration, we then consider two scenarios for production of non-thermal radiation. The first is motivated by the possibility that hard X-ray emission is due to non-thermal Bremsstrahlung by nonrelativistic particles and attempts to produce non-thermal tails by accelerating the electrons from the background plasma with an initial Maxwellian distribution. For acceleration rates smaller than the Coulomb energy loss rate, the effect of energising the plasma is to primarily heat the plasma with little sign of a distinct non-thermal tail. Such tails are discernible only for acceleration rates comparable or larger than the Coulomb loss rate. However, these tails are accompanied by significant heating and they are present for a short time of <106 years, which is also the time that the tail will be thermalised. A longer period of acceleration at such rates will result in a runaway situation with most particles being accelerated to very high energies. These more exact treatments confirm the difficulty with this model, first pointed out by Petrosian (Astrophys. J. 557:560, 2001). Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation, for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion years.  相似文献   

12.
Many significant wave phenomena have been discovered at Venus with the plasma wave instrument flow on the Pioneer Venus Orbiter. It has been shown that whistler-mode waves in the magnetosheath of the planet may be an important source of energy for the topside ionosphere. Plasma waves are also associated with thickening of the ionopause current layer. Current-generated waves in plasma clouds may provide anomalous resistance resulting in electron acceleration, possibly producing aurora. Ion-acoustic waves are observed in the bow shock, and appear to be a feature of the magnetotail boundary. Lastly plasma waves have been cited as evidence for lightning on Venus.  相似文献   

13.
The electron and ion beams which have been detected on many rockets and satellites are of particular interest because beam particles carry information about both the ionosphere and the magnetosphere out to the distant tail. Stability analyses have shown that even the most dramatic beams have evolved until the particle distribution functions are only weakly unstable. The shortest plasma wave growth lengths in the auroral region are usually comparable to the size of an arc. The resulting clearest electron beams generally are relatively minor features of distribution functions which are dominated by plateaus, loss cones, broad or stretched out field aligned features, and hot or cold isotropic components. The true electron beams therefore represent a small fraction of the total electron number density. Ion beams carry a much larger fraction of all ions, but also are only weakly unstable. The electron beams seen at low altitudes can drive whistlers (both electromagnetic and electrostatic, including lower hybrid waves) and upper hybrid waves, which may be particularly intense near electron gyroharmonics. Ion beams can drive low frequency electromagnetic waves that are related to gyrofrequencies of several ion species as well as ion acoustic and electrostatic ion cyclotron waves. These latter waves can be driven both by the drift of ion beams relative to cold stationary ions and by the drift of electrons relative to either stationary or drifting ions. Abrupt changes or boundaries in the electron and ion velocity space distribution functions (e.g. beams and loss cones) have been analyzed to provide information about the plasma source, acceleration process, and regions of strong wave-particle interactions. Fluid analyses have shown that upgoing ion beams carry a great deal of momentum flux from the ionosphere. This aspect of ion beams is analyzed by treating the entire acceleration region as a black box, and determining the forces that must be applied to support the upgoing beams. This force could be provided by moderate energy (10's of eV) electrons which are heated near the lower border of the acceleration region. It is difficult to use standard particle detectors to measure the particles which carry electric current in much of the magnetosphere. Such measurements may be relatively easy within upgoing ion beams because there is some evidence that few of the hard-to-measure cold plasma particles are present. Therefore, ion beam regions may be good places to study fluid or MHD properties of magnetospheric plasmas, including the identification of current carriers, a study of current continuity, and some aspects of the substorm and particle energization processes. Finally, some of the experimental results which would be helpful in an analysis of several magnetospheric problems are summarized.  相似文献   

14.
为了获得低马赫数流动诱发的非紧致气动噪声在半空间内传播的基本解,结合复等效源方法和边界元方法建立了半空间精确格林函数的边界积分方程,当半空间边界为刚度型阻抗边界时可避免奇异性积分.同时基于等效源方法提出一种半空间二维非紧致圆柱声散射模型,推导了静止介质中声散射基本解的理论表达式.对静止介质中的二维圆柱声散射,数值解在研...  相似文献   

15.
Cairns  Iver H.  Knock  S.A.  Robinson  P.A.  Kuncic  Z. 《Space Science Reviews》2003,107(1-2):27-34
Recent data and theory for type II solar radio bursts are reviewed, focusing on a recent analytic quantitative theory for interplanetary type II bursts. The theory addresses electron reflection and acceleration at the type II shock, formation of electron beams in the foreshock, and generation of Langmuir waves and the type II radiation there. The theory's predictions as functions of the shock and plasma parameters are summarized and discussed in terms of space weather events. The theory is consistent with available data, has explanations for radio-loud/quiet coronal mass ejections (CMEs) and why type IIs are bursty, and can account for empirical correlations between type IIs, CMEs, and interplanetary disturbances. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
为研究超声速射流冲击斜板的噪声特性及声源特性,针对不同压比下,超声速射流流场及声场分别进行了高频PIV(particle image velocimetry)测量与远场噪声测量。PIV测量结果可观测到激波格栅形成过程以及冲击斜板对它的影响。声场测量结果可捕捉到自由射流与冲击射流中不同的纯音频率随压比增加的转变过程。通过一一对比各纯音模态与流场模态,可区分各纯音模态的声源特性。结果表明:当压比在2.0~3.2之间时,共出现五种纯音模态:A模态纯音频率为剪切层大尺度涡脱落频率,此时流场呈现同轴模态;d模态和e模态中纯音频率主要为冲击纯音频率,且e模态出现时流场转化为螺旋模态,这是一种不稳定模态;当压比大于等于2.53时,纯音模态稳定成单一模态B,B模态纯音频率为啸叫频率,其流场结构转化回同轴模态,啸叫频率对斜板的存在与否不敏感;啸叫频率随着压比的增加逐渐减小,其二次谐频在基频幅值较小的方向上会出现一个强声波辐射。   相似文献   

17.
Work under the heading of Laboratory Plasma Spectroscopy may be conveniently separated into three classes depending on the extent to which the interaction of the emitting atoms with their plasma environment is central to the investigation. Zero order, the longest established use of laboratory plasmas in connection with astrophysics, concerns the use of hot plasmas for the excitation, measurement, and identification of the spectra of highly-stripped ions. In such work the properties of the plasma itself are usually of secondary importance. In first-order, plasma spectroscopy is used to determine fundamental atomic data concerned with the interaction of an atom with a single particle, usually either a photon or an electron, i.e.: the determination of oscillator strengths and collision cross-sections. Finally, higher-order processes in which the plasma nature of the surrounding medium is most relevant concern the study of line-shapes, and related topics such as the excitation of satellite spectral features by plasma oscillations. Developments in plasma diagnostic techniques in the last five years have greatly extended the scope of the second and third categories and have yielded much astrophysically important information from laboratory studies. Recent advances in these areas are reviewed.  相似文献   

18.
Some properties of the outer ionosphere and its boundary region are discussed on the basis of recent experimental results.The analysis of the new data has shown that the outer ionosphere, a plasma above the ionospheric main maximum, extends to a distance of 3 to 3.5 earth radii from the earth's surface, that is, up to the region of the so-called knee, detected and observed by means of whistlers. During periods of relatively weak magnetic storms, from time to time the electron concentration at this ionospheric boundary jumps downward by factors of 10 to 100, over a height range of only a few hundred kilometres. The inflow of charged particles into the ionosphere apparently takes place through the boundary region. Sometimes these particles are swept into it from the overlying regions.There is a great number of names for the outer ionosphere. Some of these terms, for instance the geocorona, are not at all applicable to the outer ionosphere.From the new experimental results it can be inferred that in a great part of the outer ionosphere there is no quasineutrality, that there are rather strong electric fields, and that the Maxwell ion distribution law of particle velocities breaks down. Therefore, to analyze the ionization balance one should know the particles' velocity distribution functions. Otherwise it would hardly be possible to solve the problem of the formation of the ionosphere.It is shown that within the limits of uncertainty all experimental results are in good agreement and produce a single, comprehensive picture of the structure of the outer ionosphere. Only some data, deduced from measurements of particle streams by means of ion traps, are an exception. They contradict the numerous experimental results. This discrepancy is in particular due to the difficulties of determining the plasma concentration from current density measurements.Some methods are discussed briefly. For instance, the analysis of low-frequency waves, in particular the so-called whistler and the low-frequency plasma radiation, represents a physically adequate and fruitful method for investigating the outer ionosphere.For a theoretical analysis of the above-mentioned data, it is in some cases required to take into account the effect of kinetic corrections to the refraction coefficient, of cyclotron and erenkov attenuation and radiation, etc. Over the next few years this method will come to play a great part in the exploration of the outer ionosphere, interplanetary space, and planets.Measurements of the energy spectra of incoherent back scattering of radio waves on the electron fluctuations will make another very interesting source for studying the outer ionosphere. This method is based on the interaction phenomena of radio waves with the plasma. Therefore, the scattering spectra are functions of the oscillating properties of the plasma. However, these data should be subjected to a thorough theoretical treatment on the basis of a complete theory of scattering.Up till now a sufficiently complete probe theory has not been evolved due to essential theoretical difficulties. Often this does not allow one to interpret adequately the results of measurements and considerably limits the possibilities of these methods.  相似文献   

19.
In this paper we describe and discuss the occurrence of natural wave emissions detected by GEOS-1 at frequencies above the electron gyrofrequency. The bulk of the data presented comes from the first six months of satellite operation and thus concerns mainly dayside phenomena. The paper is arranged as follows:After some general remarks, a classification of the wave phenomena is developed in Section 2, and experimental evidence and morphological information relevant to this classification are contained in Section 3. Section 4 includes some preliminary comments on nightside observations. The results are discussed in Section 5, where it is argued that they can be understood as manifestations of electron cyclotron harmonic (Bernstein) wave emission in a plasma parameter range which has only very recently received any theoretical examinations. This theme is further developed in a comparison paper (Ronnmark et al., 1978).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号