首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three main phases are discerned in the gravitropic reaction: perception of a gravitational stimulus, its transduction, and fixation of the reaction resulting in bending of an organ. According to the starch-statolith hypothesis of Nemec and Haberlandt, amyloplasts in the structurally and functionally specialized graviperceptive cells (statocytes) sediment in the direction of a gravitational vector in the distal part of a cell while a nucleus is in the proximal one. If amyloplasts appear to act as gravity sensors, the receptors, which interact with sedimented amyloplasts, and next signaling are still unclear. An analysis of the structural-functional organization of cells in different root cap layers of such higher plants as pea, Arabidopsis thaliana, and Brassica rapa grown under 1 g, on the clinostats, and in microgravity, allows us to support the hypothesis that amyloplasts function as statoliths in statocytes, but they may not be only the passive statolithic mass. We propose that amyloplasts fulfill a more complex function by interacting with a receptor, which is a nucleus, in transduction of some signal to it. Gravity-induced statolith movement in certain order leads to a new functional connection between gravity susceptors--amyloplasts and a receptor--a nucleus receiving some signal presumedly of a mechanical or biochemical nature from the amyloplasts. During gravitropism, sugar signaling could induce expression of genes encoding auxin transport proteins in a nucleus giving the nucleus an intermediate role in signal trunsduction following perception.  相似文献   

2.
Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation.  相似文献   

3.
The role of Ca2+ in the gravitropic perception and/or response mechanism of Coprinus cinereus was examined by treating stipes with inhibitors of Ca2+ transport and calmodulin. Inhibitors had no effect on gravity perception but significantly diminished gravitropism. It is concluded that, under the conditions tested, Ca2+ is not involved in gravity perception by Coprinus stipes, but does contribute to transduction of the gravitropic impulse. The results would be consistent with regulation of the gravitropic bending process requiring accumulation of Ca2+ within a membrane-bound compartment. Treatment of stipes with an actin inhibitor caused a significantly delayed response, a result not observed with the Ca2+ inhibitors. This suggests that cytoskeletal elements may be involved directly in perception of gravity by Coprinus stipes while Ca(2+)-mediated signal transduction may be involved in directing growth differentials.  相似文献   

4.
In order to help resolve some of the controversy associated with ground-based research that has supported the starch-statolith theory of gravity perception in plants, we performed spaceflight experiments with Arabidopsis in Biorack during the January 1997 and May 1997 missions of the Space Shuttle. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then were given either a 30, 60, or 90 minute gravity stimulus on a centrifuge. By the 90 min 1-g stimulus, the WT exhibited the greatest magnitude of curvature and the starchless mutant exhibited the smallest curvature while the two reduced starch mutants had an intermediate magnitude of curvature. In addition, space-grown plants had two structural features that distinguished them from the controls: a greater number of root hairs and an anomalous hypocotyl hook structure. However, the morphological changes observed in the flight seedlings are likely to be due to the effects of ethylene present in the spacecraft. (Additional ground-based studies demonstrated that this level of ethylene did not significantly affect gravitropism nor did it affect the relative gravitropic sensitivity among the four strains.) Nevertheless, this experiment on gravitropism was performed the "right way" in that brief gravitational stimuli were provided, and the seedlings were allowed to express the response without further gravity stimuli. Our spaceflight results support previous ground-based studies of these and other mutants since increasing amounts of starch correlated positively with increasing sensitivity to gravity.  相似文献   

5.
In higher plants, gravity is a major environmental cue that governs growth orientation, a phenomenon termed gravitropism. It has been suggested that gravity also affects other aspects of morphogenesis, such as circumnutation and winding movements. Previously, we showed that these aspects of plant growth morphology require amyloplast sedimentation inside gravisensing endodermal cells. However, the molecular mechanism of the graviresponse and its relationship to circumnutation and winding remains obscure. Here, we have characterized a novel shoot gravitropic mutant of morning glory, weeping2 (we2). In the we2 mutant, the gravitropic response of the stem was absent, and hypocotyls exhibited a severely reduced gravitropic response, whereas roots showed normal gravitropism. In agreement with our previous studies, we found that we2 mutant has defects in shoot circumnutation and winding. Histological analysis showed that we2 mutant forms abnormal endodermal cells. We identified a mutation in the morning glory homolog of SHORT-ROOT (PnSHR1) that was genetically linked to the agravitropic phenotype of we2 mutant, and which may underlie the abnormal differentiation of endodermal cells in this plant. These results suggest that the phenotype of we2 mutant is due to a mutation of PnSHR1, and that PnSHR1 regulates gravimorphogenesis, including circumnutation and winding movements, in morning glory.  相似文献   

6.
Although the orientation of mycelial hyphal growth is usually independent of the gravity vector, individual specialised hyphae can show response to gravity. This is exemplified by the sporangiophore of Phycomyces, but the most striking gravitropic reactions occur in mushroom fruit bodies. During the course of development of a mushroom different tropisms predominate at different times; the young fruit body primordium is positively phototropic, but negative gravitropism later predominates. The switch between tropisms has been associated with meiosis. The spore-bearing tissue is positively gravitropic and responds independently of the stem. Bracket polypores do not show tropisms but exhibit gravimorphogenetic responses: disturbance leads to renewal of growth producing an entirely new fruiting structure. Indications from both clinostat and space flown experiments are that the basic form of the mushroom (overall tissue arrangement of stem, cap, gills, hymenium, veil) is established independently of the gravity vector although maturation, and especially commitment to the meiosis-sporulation pathway, requires the normal gravity vector. The gravity perception mechanism is difficult to identify. The latest results suggest that disturbance of cytoskeletal microfilaments is involved in perception (with nuclei possibly being used as statoliths), and Ca2(+)-mediated signal transduction may be involved in directing growth differentials.  相似文献   

7.
Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (> or = l40nmol m-2 s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities < or = l00nmol m-2 s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities < or = 140nmol m-2 s-1.  相似文献   

8.
The initial event of gravity perception by plants is generally thought to occur through sedimentation of amyloplasts in specialized sensory cells. In the root, these cells are the columella which are located toward the center of the root cap. To define more precisely the contribution of columella cells to root gravitropism, we used laser ablation to remove single columella cells or groups of these cells and observed the effect of their removal on gravity sensing and response. Complete removal of the cap or all the columella cells (leaving peripheral cap cells intact) abolishes the gravity response of the root. Removal of stories of columella revealed differences between regions of the columella with respect to gravity sensing (presentation time) versus graviresponse (final tropic growth response of the root). This fine mapping revealed that ablating the central columella located in story 2 had the greatest effect on presentation time whereas ablating columella cells in story 3 had a smaller or no effect. However, when removed by ablation the columella cells in story 3 did inhibit gravitropic bending, suggesting an effect on translocation of the gravitropic signal from the cap rather than initial gravity perception. Mapping the in vivo statolith sedimentation rates in these cells revealed that the amyloplasts of the central columella cells sedimented more rapidly than those on the flanks do. These results show that cells with the most freely mobile amyloplasts generate the largest gravisensing signal consistent with the starch statolith hypothesis of gravity sensing in roots.  相似文献   

9.
The cytoskeleton has been proposed to be a key player in the gravitropic response of higher plants. A major approach to determine the role of the cytoskeleton in gravitropism has been to use inhibitors to disrupt the cytoskeleton and then to observe the effect that such disruption has on organ bending. Several investigators have reported that actin or microtubule inhibitors do not prevent root gravitropism, leading to the conclusion that the cytoskeleton is not involved in this process. However, there are recent reports showing that disruption of the actin cytoskeleton with the actin inhibitor, latrunculin B, promotes the gravitropic response of both roots and shoots. In roots, curvature is sustained during prolonged periods of clinorotation despite short periods of gravistimulation. These results indicate that an early gravity-induced signal continues to persist despite withdrawal of the constant gravity stimulus. To investigate further the mechanisms underlying the promotive effect of actin disruption on root gravitropism, we treated maize roots with varying concentrations of latrunculin B in order to determine the lowest concentration of latrunculin B that has an effect on root bending. After a 10-minute gravistimulus, treated roots were axially rotated on a one rpm clinostat and curvature was measured after 15 hours. Our results show that 100 nM latrunculin B induced the strongest promotive effect on the curvature of maize roots grown on a clinostat. Moreover, continuously gravistimulated roots treated with 100 nM latrunculin B exhibited stronger curvature responses while decapped roots treated with this concentration of latrunculin B did not bend during continuous gravistimulation. The stronger promotive effect of low concentrations of latrunculin B on the curvature of both clinorotated and continuously gravistimulated roots suggests that disruption of the finer, more dynamic component of the actin cytoskeleton could be the cause of the enhanced tropic responses of roots to gravity.  相似文献   

10.
The superficial cells of dark-grown moss shoots give rise to negatively gravitropic protonemata, whatever the orientation of the shoot. Shoot orientation, however, does affect from which side of the shoot the protonemata form and the direction of their growth. Protonemata from horizontal shoots grow out at a near-right angle to their supporting axes and are initiated more or less evenly along the upper side of the stem. Protonemata arising from vertically-oriented shoots in either an upright or an inverted position grow straight at an acute angle to the stem axis. The difference in the growth direction of the protonemata seems to be conditioned by the different position of the growth zone of the protonemal outgrowths, and subsequently that of the apical protonemal cells, with respect to the gravity vector. Observations suggest that the shoot protonemata, in conditions of clinorotation, persist in their original growth direction. Results also indicate that, in darkness, gravity determines only the site of protonemata initiation, not the process of initiation itself. Light, by contrast, by acting through both phytochrome and high-energy reaction systems, triggers the initiation process and defines the location of protonemata.  相似文献   

11.
In preparation for microgravity experiments, we studied the kinetics of gravitropism in seedlings of wild-type (WT) Arabidopsis and three starch-deficient mutants. One of these mutants is starchless (ACG 21) while the other two are intermediate starch mutants (ACG 20 and ACG 27). In root cap cells, ACG 20 and 27 have 51% and 60% of the WT amount of starch, respectively. However, in endodermal cells of the hypocotyl, ACG 20 has a greater amount of starch than ACG 27. WT roots and hypocotyls were much more responsive to gravity than were the respective organs of the starchless mutant, and the intermediate starch mutants exhibited reduced gravitropism but had responses that were close to that of the WT. In roots, ACG 27 (more starch) was more responsive than ACG 20 (less starch), while in hypocotyls, ACG 20 (more starch) had a greater response than ACG 27 (less starch). Taken together, our data are consistent with the starch-statolith hypothesis for gravity perception in that the degree of graviresponsiveness is proportional to the total mass of plastids per cell. These results also suggest that (in roots) 51-60% starch is close to the threshold amount of starch needed for full gravitropism and that the gravity sensing system is "overbuilt."  相似文献   

12.
Endogenous electric fields give vectorial direction to morphological development in Zea mays (sweet corn) in response to gravity. Endogenous electrical fields are important because of their ability to influence: 1) intercellular organization and development through their effects on the membrane potential, 2) direct effects such as electrophoresis of membrane components, and 3) both intracellular and extracellular transport of charged compounds. Their primary influence is in providing a vectorial dimension to the progression of one physiological state to another. Gravity perception and transduction in the mesocotyl of vascular plants is a complex interplay of electrical and chemical gradients which ultimately provide the driving force for the resulting growth curvature called gravitropism. Among the earliest events in gravitropism are changes in impedance, voltage, and conductance between the vascular stele and the growth tissues, the cortex, in the mesocotyl of corn shoots. In response to gravistimulation: 1) a potential develops which is vectorial and of sufficient magnitude to be a driving force for transport between the vascular stele and cortex, 2) the ionic conductance changes within seconds showing altered transport between the tissues, and 3) the impedance shows a transient biphasic response which indicates that the mobility of charges is altered following gravistimulation and is possibly the triggering event for the cascade of actions which leads to growth curvature.  相似文献   

13.
微重力作为典型的空间环境因素,对植物生长发育的影响机制是空间生命科学的研究热点。微重力环境直接或间接影响植物代谢,并引起许多生理适应。 随着系统生物学的发展,代谢网络模型使微重力环境下的植物代谢建模成为可能。采用流平衡分析方法对模式植物拟南芥不同组织的代谢网络进行分析,研究微重力对拟南芥生长发育的影响机制。通过比较空间与地面条件下拟南芥的生物质产量,发现空间条件下拟南芥黄化幼苗、幼苗、芽、根、下胚轴的生物量分别下降了33.00%,51.52%,6.89%,12.53%,11.70%,与空间环境下拟南芥的长势变化趋势一致。代谢通路富集分析发现,微重力使得拟南芥的碳固定等通路下调,而磷酸戊糖途径上调,初步解析了微重力对拟南芥生长发育的影响机制,也验证了流平衡方法用于微重力生物学效应研究中的可行性。   相似文献   

14.
Roots have been shown to respond to a moisture gradient by positive hydrotropism. Agravitropic mutant plants are useful for the study of the hydrotropism in roots because on Earth hydrotropism is obviously altered by the gravity response in the roots of normally gravitropic plants. The roots are able to sense water potential gradient as small as 0.5 MPa mm−1. The root cap includes the sensing apparatus that causes a differential growth at the elongation region of roots. A gradient in apoplastic calcium and calcium influx through plasmamembrane in the root cap is somehow involved in the signal transduction mechanism in hydrotropism, which may cause a differential change in cell wall extensibility at the elongation region. We have isolated an endoxy loglucan transferase (EXGT) gene that is strongly expressed in pea roots and appears to be involved in the differential growth in hydrotropically responding roots. Thus, it is now possible to study hydrotropism in roots by comparing with or separate from gravitropism. These results also imply that microgravity conditions in space are useful for the study of hydrotropism and its interaction with gravitropism.  相似文献   

15.
Under gravistimulation, dark-grown protonemata of Pottia intermedia revealed negative gravitropism with a growth rate of approximately 28 μm·h−1 at room temperature (20 °C). In 7 days, the protonema formed a bundle of vertically oriented filaments. At an elevated temperature (30 °C), bundles of vertically growing filaments were also formed. However, both filament growth rate and amplitude of the gravicurvature were reduced. Red light (RL) irradiation induced a positive phototropism of most apical protonemal cells at 20 °C. In a following period of darkness, approximately two-thirds of such cells began to grow upward again, recovering their negative gravitropism. RL irradiation at the elevated temperature caused a partial increase in the number of protonemal cells with negative phototropism, but the protonemata did not exhibit negative gravitropism after transfer to darkness. The negative gravitropic reaction was renewed only when protonemata were placed at 20 °C. A dramatic decrease in starch amount in protonemal apical cells, which are sensitive to both gravity and light, occurred at the higher temperature. Such a decrease may be one of the reasons for the inhibition of the protonemal gravireaction at the higher temperature. The observation has a bearing on the starch-statolith theory.  相似文献   

16.
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema.  相似文献   

17.
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema.  相似文献   

18.
Gravitropically tip-growing cell types are attractive unicellular model systems for investigating the mechanisms and the regulation of gravitropism. Especially useful for studying the mechanisms of positive and negative gravitropic tip-growth are characean rhizoids and protonemata. They originate from the same cell type, show the same overall cell shape, cytoplasmic zonation, arrangement of actin and microtubule cytoskeleton, use statoliths for gravisensing, but show opposite gravitropism. In both cell types, actin microfilaments are complexly organized in the apical dome,where a dense spherical actin array is colocalized with spectrin-like epitopes and a unique endoplasmic reticulum aggregate, the structural center of the Spitzenk?rper. The opposite gravitropic responses seem to be based on differences in the actin-organized anchorage of the Spitzenk?rper and the actin-mediated transport of statoliths. In negatively gravitropic (upward bending) protonemata, the statoliths-induced drastic upward shift of the cell tip is preceded by a relocalization of dihydropyridine-binding calcium channels and of the apical calcium gradient to the upper flank (bending by bulging). Such relocalizations have not been observed in positively gravitropically responding (downward growing) rhizoids in which statoliths sedimentation is followed by differential flank growth (bending by bowing). This paper reviews the current knowledge and hypotheses on the mechanisms of the opposite gravitropic responses in characean rhizoids and protonemata.  相似文献   

19.
The rhizoids of the green alga Chara are tip-growing cells with a precise positive gravitropism. In rhizoids growing downwards the statoliths never sediment upon the cell wall at the very tip but keep a minimal distance of approximately 10 micrometers from the cell vertex. It has been argued that this position is attained by a force acting upon the statoliths in the basal direction and that this force is generated by an interaction between actin microfilaments and myosin on the statolith membrane. This hypothesis received experimental support from (1) effects of the actin-attacking drug cytochalasin, (2) experiments under microgravity conditions, and (3) clinostat experiments. Using video-microscopy it is now shown that this basipetal force also acts on statoliths during sedimentation. As a result, many statoliths in Chara rhizoids do not simply fall along the plumb line while sedimenting during gravistimulation, but move basipetally. This statolith movement is compared to the ones occurring in the unicellular Chara protonemata during gravistimulation. Dark-grown protonemata morphologically closely resemble the rhizoids but respond negatively gravitropic. In contrast to the rhizoids a gravistimulation of the protonemata induces a transport of statoliths towards the tip. This transport is mainly along the cell axis and not parallel to the gravity vector. It is stressed that the sedimentation of statoliths in Chara rhizoids and protonemata as well as in gravity sensing cells in mosses and higher plants is accompanied by statolith movements based on interactions with the cytoskeleton. In tip-growing cells these movements direct the statoliths to a definite region of the cell where they can sediment and elicit a gravitropic curvature. In the statocytes of higher plants the interactions of the statoliths with the cytoskeleton probably do not serve primarily to move the statoliths but to transduce mechanical stresses from the sedimenting statoliths to the plasma membrane.  相似文献   

20.
Under gravistimulation, dark-grown protonemata of Pottia intermedia revealed negative gravitropism with a growth rate of approximately 28 μm·h−1 at room temperature (20 °C). In 7 days, the protonema formed a bundle of vertically oriented filaments. At an elevated temperature (30 °C), bundles of vertically growing filaments were also formed. However, both filament growth rate and amplitude of the gravicurvature were reduced. Red light (RL) irradiation induced a positive phototropism of most apical protonemal cells at 20 °C. In a following period of darkness, approximately two-thirds of such cells began to grow upward again, recovering their negative gravitropism. RL irradiation at the elevated temperature caused a partial increase in the number of protonemal cells with negative phototropism, but the protonemata did not exhibit negative gravitropism after transfer to darkness. The negative gravitropic reaction was renewed only when protonemata were placed at 20 °C. A dramatic decrease in starch amount in protonemal apical cells, which are sensitive to both gravity and light, occurred at the higher temperature. Such a decrease may be one of the reasons for the inhibition of the protonemal gravireaction at the higher temperature. The observation has a bearing on the starch-statolith theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号