首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The following report presents the main conclusions of the sixth and seventh EOPOLE workshops, held in Hydra, Greece, 3–4 May and Leiden, the Netherlands, 3–5 July 2000, respectively. The objectives of the first workshop were to evaluate different approaches to pricing policy and to assess how new developments in Earth observation and information technology are having an impact on Earth observation data pricing policy. Those of the second were to assess the constraints that legal frameworks impose on Earth observation and to explore ways in which they can be used to its advantage.  相似文献   

2.
The purpose of this paper is to provide an overview of the potential contribution of satellite Earth observation (EO) to implementing and ensuring compliance with Multilateral Environmental Agreements (MEAs) from the institutional and legal point of view. EO has recently been recognized as an effective means to satisfy the demand for environmental information required by MEAs; however, actual usage of EO data in MEA implementation and compliance assurance has not yet made significant progress. While EO's legal and technical characteristics appear relevant to such applications, institutional linkage and technical reliability are still missing. Further efforts to promote EO data use for MEAs are needed through initiatives that link the EO system and data supplier with decision makers in the MEA community. The Japan Aerospace Exploration Agency's (JAXA) Kyoto and Carbon Initiative may be one example of such efforts. Recent movements, such as the Group on Earth Observation (GEO), could also provide an ideal focal point for coordinating and developing globally integrated EO and data utilization systems that could facilitate MEA implementation and compliance.  相似文献   

3.
There is a growing realisation of the increasingly varied and interesting possibilities for the use of Earth observation data to ensure compliance with international obligations generally, and treaty obligations in particular. Most examinations of the application of Earth observation data to monitoring states’ compliance with international obligations focus on the environmental sector. This paper proposes the use of remote sensing satellites for the support of multilateral environmental agreements (MEAs), especially land monitoring MEAs such as the Convention on Biological Diversity (1992) and the Kyoto Protocol (1997). It discusses the uses of remote sensing for treaty implementation or enforcement in general, and the admissability of satellite imagery as legal proof, before examining how Earth observation-derived data could be of benefit to specific MEAs. As sensors become increasingly sophisticated the use of remote sensing in this area should grow but it needs to be supported by its more widespread legal recognition as proof.  相似文献   

4.
Access to space-based remote sensing data is critical for Earth science and the study of global change. This article summarizes a variety of US government Earth science data policies and problems. The authors examine current efforts to develop data policies for the next generation of US remote sensing programmes, noting likely problems based on past experiences. They argue that the goal of US Earth science data policy should be to provide the widest possible dissemination of data. Setting such a goal permits the development of a simple, coherent data policy that serves scientific, commercial and US government interests.  相似文献   

5.
This paper examines the failure of the Earth Observation International Coordination Working Group to implement an International Earth Observation System. Tracing the history of both the Group and the mission concept, it explains the political and organizational failures that took place. It shows that these failures were linked to different approaches to international cooperation in Earth observation data policy. The main points of contention existed between Working Group members, NASA and ESA. NASA favored formal and binding legal arrangements, while ESA preferred to avoid institutionalized legal commitments. Success in coordinating and harmonizing data policy on a multilateral basis for Earth observation missions is more likely to be achieved by pursuing agreement on general principles and terms of reference than by seeking specific legal agreements.  相似文献   

6.
A string moving with geostationary angular velocity in its radial relative equilibrium configuration around the Earth, reaching from the surface of the Earth far beyond the geostationary height, could be used as track for an Earth to space elevator. This is an old dream of mankind, originating about 100 years ago in Russia. Besides the question of feasibility from a technological point of view also the question concerning the stability of such a configuration has not yet been completely solved. Under the assumption that a proper material (carbon nanotubes) is available, making the connection possible technologically, we address the question of existence and stability of the radial relative equilibrium of a tapered string on a circular geosynchronous trajectory around the Earth, reaching from the surface of the Earth far beyond the geostationary height.  相似文献   

7.
《Space Policy》2014,30(4):215-222
Although existing international instruments such as the Outer Space Treaty and Moon Agreement generally express sentiments for minimizing missions' extraterrestrial environmental impacts, they tend to be limited in scope, vague and generally unenforceable. There is no formal structure for assessing how and to what extent we affect those environments, no opportunity for public participation, no uniform protocol for documenting and registering the effects of our actions and no requirement to mitigate adverse impacts or take them into consideration in the decision-making process. Except for precautions limiting forward biological contamination and issues related to Earth satellites, environmental impact analysis, when done at all, remains focused on how missions affect the Earth and near-Earth environments, not how our actions affect the Moon, Mars, Europa, comets and other potential destinations. Extraterrestrial environmental impacts are potentially counterproductive to future space exploration, exploitation and scientific investigations. Clear, consistent and effective international protocols guiding a process for assessing such impacts are warranted. While instruments such as the US National Environmental Policy Act provide legally tested and efficient regulatory models that can guide impact assessment here on Earth, statutory legal frameworks may not work as well in the international environment of outer space. A proposal for industry-driven standards and an environmental code of conduct based, in part, on best management practices are offered for consideration.  相似文献   

8.
Linda Billings   《Space Policy》2006,22(4):249-255
The US civilian space program is focused on planning for a new round of human missions beyond Earth orbit, to realize a ‘vision’ for exploration articulated by President George W. Bush. It is important to examine this ‘vision’ in the broader context of the global enterprise of 21st century space exploration. How will extending a human presence into the Solar System affect terrestrial society and culture? What legal, ethical and other value systems should govern human activities in space? This paper will describe the current environment for space policy making and possible frameworks for future space law, ethics and culture. It also proposes establishment of a World Space Conference to aid deliberations on the above.  相似文献   

9.
Remote sensing in the information age   总被引:1,自引:0,他引:1  
Adigun Ade Abiodun   《Space Policy》1998,14(4):229-238
A large percentage of the public today perceives the majority of applications of Earth observation data from satellite and aircraft altitudes to be focused on the understanding and management of the renewable and non-renewable resources of the Earth and its environment. Originally conceived as a tool for gathering intelligence information, remote sensing has just fully emerged from its military womb to the public domain. Advances in the technology, a variety of indirect benefits that could be derived from space exploration, commercialization of remote sensing and the drive of the value-added companies - all of these hold promise for new opportunities for many other novel applications of Earth observation data and related information. In the advent of the more advanced, user-friendly, cost effective, and problem solving operations being championed by the private sector, particularly in the industrialized countries, it appears that the commercial future for remote sensing programmes and related information generated in the process is promising. This paper examines how the information age is influencing the metamorphosis of remote sensing technology particularly through international legal instruments and converging technologies. In spite of the progress attained to-date, of international concern is possible radio frequency interference between remote sensing satellite and communication satellite services. There is also a major knowledge gap between the providers of raw remote sensing data and the user community, particularly those interested in the new high-level information. A resolution of these issues will enhance the contributions of remote sensing to the information economy.  相似文献   

10.
M.Y.S. Prasad   《Space Policy》2005,21(4):243-249
This article briefly presents the historical background, as seen by ISRO and India, to the growing problem of space debris. It describes the technical aspects of ISRO's activities in the field of space debris, and the grey areas in technical understanding, which may impede legal discussions. Analysis of the cost and technical aspects of reorbiting satellites from geostationary Earth orbit (GEO) is detailed, since this is an important area for India and other developing countries. The article also briefly describes ISRO's views of the applicability and relevance of the existing space treaties to a possible future legal regime for space debris. Debates are currently taking place in the UN and other multilateral fora on the subject of space debris and the situation is dynamic. The main aim of this article is to inform readers of ISRO's and India's position in the UN on the subject of space debris, in terms of its technical, political and legal aspects. Certain issues of importance from the legal point of view, though not of immediate urgency, are also discussed.  相似文献   

11.
The Global Earth Observation System of Systems: Science Serving Society   总被引:2,自引:1,他引:1  
Over the next decade, a Global Earth Observation System of Systems (GEOSS) will revolutionize our understanding of the Earth and how it works, producing societal benefits through more coordinated observations, better data management, increased data sharing and timely applications. The political momentum behind the establishment of GEOSS is described and examples of its benefits—drought prediction, disease monitoring, accuracy of weather and energy needs forecasting, disaster mitigation—are provided. While challenges exist, particularly in the area of making data accessible, steps are being taken to meet them, e.g. through the new GEO-Netcast concept. Interagency collaboration within countries is as important as international cooperation; the efforts of the US Group on Earth Observations in this regard are discussed. Maintaining the strong political support here and in all participating countries will be key to the success of GEOSS.  相似文献   

12.
The 2007 US National Research Council Decadal Survey for Earth Science and Applications from Space was the first consensus perspective produced by the US Earth Science community of the relative priorities among a sequence of 17 satellite missions over the course of the next decade. However, the Decadal Survey only captured the perspective of the science community, leading to questions about the inclusion of broader priorities from constituent communities and stakeholders. We present a stakeholder value network analysis for the NASA/NOAA Earth Observation Program. The analysis includes a rigorous articulation of the needs and objectives of 13 major stakeholders and a complete stakeholder value network with 190 individual “value flows” that capture the interactions between all the stakeholders. It produces a novel stakeholder map, graphically indicating the outputs most likely to create a lasting Earth Science program. The most important value loops and program outputs are used to derive a set of high-level program goals that suggest what NASA and NOAA should do, as well as how they should conduct business. The analysis concludes that international partnerships represent a strong potential partner for certain science missions with greater potential value delivery than currently-prioritized efforts with defense stakeholders and concludes that weather and land-use missions, in addition to climate missions, should be given highest priority; water, human health, and solid Earth missions should be given lower priority based on each science category's potential for delivering value to the entire stakeholder network.  相似文献   

13.
Soviet General Secretary Gorbachev has proposed a joint US-Soviet programme to explore the planet Mars. The authors argue that there is considerable advantage to be gained from such a programme for both countries and for all nations on Earth. They trace the history of the US and Soviet space programmes and of cooperation between the two nations, focusing particularly on activities relating to Mars. Robotic Mars exploration is already technically possible and could take place in the 1990s, and a first step towards manned exploration could be the writing of a development and flight plan aiming for the first decade of the 21st century.  相似文献   

14.
Vera Mayorova  Kirill Mayorov   《Acta Astronautica》2009,65(9-10):1393-1396
Current educational system is facing a contradiction between the fundamentality of engineering education and the necessity of applied learning extension, which requires new methods of training to combine both academic and practical knowledge in balance. As a result there are a number of innovations being developed and implemented into the process of education aimed at optimizing the quality of the entire educational system. Among a wide range of innovative educational technologies there is an especially important subset of educational technologies which involve learning through hands-on scientific and technical projects. The purpose of this paper is to describe the implementation of educational technologies based on small satellites development as well as the usage of Earth remote sensing data acquired from these satellites. The increase in public attention to the education through Earth remote sensing is based on the concern that although there is a great progress in the development of new methods of Earth imagery and remote sensing data acquisition there is still a big question remaining open on practical applications of this kind of data. It is important to develop the new way of thinking for the new generation of people so they understand that they are the masters of their own planet and they are responsible for its state. They should desire and should be able to use a powerful set of tools based on modern and perspective Earth remote sensing. For example NASA sponsors “Classroom of the Future” project. The Universities Space Research Association in United States provides a mechanism through which US universities can cooperate effectively with one another, with the government, and with other organizations to further space science and technology, and to promote education in these areas. It also aims at understanding the Earth as a system and promoting the role of humankind in the destiny of their own planet. The Association has founded a Journal of Earth System Science Education. Authors describe an effective model of educational technology developed in the Center for Earth Remote Sensing of Bauman Moscow State Technical University and based on scientific and educational organizations integration in the field of applied studies. The paper also presents how students are being trained to acquire and process satellite imagery data from Terra and Aqua satellites. It also reveals the results of space monitoring for Russia's ecologically complex regions conducted by Bauman Moscow State Technical University students in cooperation with specialists from the Laboratory for Aerospace Methods of Moscow State University named after M. Lomonosov.  相似文献   

15.
Assuring the sustainability of space activities   总被引:1,自引:1,他引:0  
The growth of new space systems and the continued creation of orbital debris could in a few years make activities in Earth orbit unsustainable, so finding cost-effective ways to sustain space activities in Earth orbit is essential. Because outer space activities serve the needs of the military–intelligence, civil, and commercial communities, each with their own requirements, creating the necessary international agreements for reaching and maintaining a condition of sustainability will not be easy. This paper summarizes the primary issues for the international space community regarding our future ability to reap the benefit of space systems in Earth orbit. It explores several of the efforts to develop international agreements that would lead to or support the sustainability of space activities and examines the benefits and drawbacks of each approach. In particular, it reviews progress within the UN COPUOS, and examines the EU's proposal for an international Code of Conduct for Outer Space Activities. It also notes the need for states to establish or expand their own space legal infrastructure to conform to the UN treaties and guidelines for space activities.  相似文献   

16.
Claudio Maccone   《Acta Astronautica》2004,55(12):991-1006
A system of two space bases housing missiles is proposed to achieve the Planetary Defense of the Earth against dangerous asteroids and comets. We show that the layout of the Earth–Moon system with the five relevant Lagrangian (or libration) points in space leads naturally to only one, unmistakable location of these two space bases within the sphere of influence of the Earth. These locations are at the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth).

We show that placing bases of missiles at L1 and L3 would cause those missiles to deflect the trajectory of asteroids by hitting them orthogonally to their impact trajectory toward the Earth, so as to maximize their deflection. We show that the confocal conics are the best class of trajectories fulfilling this orthogonal deflection requirement.

An additional remark is that the theory developed in this paper is just a beginning of a larger set of future research work. In fact, while in this paper we only develop the Keplerian analytical theory of the Optimal Planetary Defense achievable from the Earth–Moon Lagrangian points L1 and L3, much more sophisticated analytical refinements would be needed to:

1. Take into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3;
2. add more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth–Moon system or from the surface of the Moon itself;
3. encompass the full range of missiles currently available to the US (and possibly other countries) so as to really see “which asteroids could be diverted by which missiles”, even in the very simplified scheme outlined here.

Outlined for the first time in February 2002, our Confocal Planetary Defense concept is a Keplerian Theory that proved simple enough to catch the attention of scholars, representatives of the US Military and popular writers. These developments could possibly mark the beginning of an “all embracing” mathematical vision of Planetary Defense beyond all learned activities, dramatic movies and unknown military plans covered by secret.  相似文献   


17.
基于序优化理论的晕轨道转移轨道设计   总被引:1,自引:1,他引:0  
利用晕轨道的稳定流形可以设计从地球到晕轨道的转移轨道。但由于小幅度晕轨道的稳 定流形与地球停泊轨道无法相交,因此需采用两脉冲转移。微分修正法是求解两脉冲转移常 用的优化方法,虽然收敛速度快,但很难获取全局最优解,而且收敛半径小,如果初始猜想 与最优解相差很远,该方法可能会不收敛。将序优化理论与微分修正法相结合,利用序优化 思想缩小搜索空间,得到足够好的初始猜想,然后利用微分修正法快速收敛到满足终端精度 要求的解。仿真结果表明该方法有很好的收敛性,且计算量小。
  相似文献   

18.
The question of how far rockets used for commercial launch services are subsidised by their respective governments remains highly topical. This article traces the history of the first legal challenge to be made on this basis by a US launch service provider against Arianespace, a case which also called into question the pricing of the Space Shuttle. The perceptions, deliberations and negotiations of both sides are traced and it is noted that their most important outcome was not settlement of the case itself but agreement to start serious consultations on defining ‘rules of the road’ regarding government support to the commercial launch industry.  相似文献   

19.
A state's posture on remote sensing of the Earth by orbiting satellites varies depending upon whether it is a ‘sensing’ or a ‘sensed’ state, upon its present economic status, and upon its economic and political history. This article considers the international legal questions related to remote sensing and discusses the political aspects with special emphasis upon the views of the Third World. The author concludes that, unless Third World states and others who support them alter their views somewhat, it is probable that remote sensing of natural resources will continue without specific legal guidelines.  相似文献   

20.
Claudio Maccone   《Acta Astronautica》2006,58(12):662-670
A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth–Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement.The mathematical theory developed by the author in the years 2002–2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth–Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:
(1) the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);
(2) the asteroid's size and density (also supposed to be known from astronomical observations of various types);
(3) the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;
(4) the distance from the Earth of the two Lagrangian points L1 and L3 where the defense missiles are to be housed;
(5) the deflecting missile's data, namely its mass and especially its “extra-boost”, that is, the extra-energy by which the missile must hit the asteroid to achieve the requested minimal deflection outside the security radius around the Earth.
This discovery of the simple “asteroid deflection law” presented in this paper was possible because:
(1) In the vicinity of the Earth, the hyperbola of the arriving asteroid is nearly the same as its own asymptote, namely, the asteroid's hyperbola is very much like a straight line. We call this approximation the line/circle approximation. Although “rough” compared to the ordinary Keplerian theory, this approximation simplifies the mathematical problem to such an extent that two simple, final equations can be derived.
(2) The confocal missile trajectory, orthogonal to this straight line, ceases then to be an ellipse to become just a circle centered at the Earth. This fact also simplifies things greatly. Our results are thus to be regarded as a good engineering approximation, valid for a preliminary astronautical design of the missiles and bases at L1 and L3.
Still, many more sophisticated refinements would be needed for a complete Planetary Defense System:
(1) taking into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3;
(2) adding more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth–Moon system or from the surface of the Moon itself;
(3) encompassing the full range of missiles currently available to the USA (and possibly other countries) so as to really see “which missiles could divert which asteroids”, even just within the very simplified scheme proposed in this paper.
In summary: outlined for the first time in February 2002, our Confocal Planetary Defense concept is a simplified Keplerian Theory that already proved simple enough to catch the attention of scholars, popular writers, and representatives of the US Military. These developments would hopefully mark the beginning of a general mathematical vision for building an efficient Planetary Defense System in space and in the vicinity of the Earth, although not on the surface of the Earth itself!We must make a real progress beyond academic papers, Hollywood movies and secret military plans, before asteroids like 99942 Apophis get close enough to destroy us in 2029 or a little later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号