首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
介绍了对增长WP8发动机可靠性所做的探索性工作:可靠性信息的搜集和处理,故障类型判定,对多发性故障的纠正措施,以及对延长首翻期的可行性分析和改进工作。  相似文献   

2.
对武器装备首翻期的探讨   总被引:1,自引:0,他引:1  
说明了飞机首翻期概念的由来,论述了依据现代维修理念及国内外的实例取消首翻期的理由。  相似文献   

3.
本文以安全寿命定寿,以损伤容限保障安全,发展了结构可靠性定寿模型,给出了确定结构首翻期和检修周期公式;还给出了该模型应用于航空发动机动力构件疲劳定寿的实例  相似文献   

4.
尽管发动机有规定的使用寿命(疲劳寿命)和日历时限(日历寿命),但限于实际的需要,军用直升机利用率一般较低,使用时间少、停场时间长,约97%的时间属于地面停放,日历时限制约飞机使用情况比较普遍.因此,延长发动机的日历时限,并制定出使用维护工作中应采取的措施非常重要.本文通过大量调查研究和分析计算,提出了将发动机首翻日历期寿命由6年延长至9年是可行的.  相似文献   

5.
<正>2015年11月16日,GE航空集团公布了其全新的涡轮螺旋桨发动机。该发动机已被德事隆航空选择为其全新单发涡桨式飞机(SETP)提供动力。德事隆航空和GE在美国国家公务航空协会年度展会上宣布了这一飞机-发动机联合项目。这款1300轴马力涡桨发动机是GE针对在850~1600轴马力范围的通用及公务航空市场推出的系列发动机中的首款型号。这款新发动机的特点在于其行业领先的16∶1的总压比(OPR),对于平均首翻期在4000~6000飞行小时的同等功率级别的发动机来说,它能  相似文献   

6.
确定航空发动机设计定型试飞初始寿命时,面临试飞时间要求长于单台发动机定型试车累计时间的矛盾,需要既确保试飞试验载机的安全,又能满足试飞所需求时间。通过分析航空发动机寿命的确定方法,对初始寿命的确定进行深入研究,结合某型涡轴发动机研制实际情况,提出了在完成关键件安全寿命验证的基础上,结合同步开展的设计定型持久试车、首翻期寿命试车和试飞使用信息分析评估等,分阶段给出整机放飞寿命满足试飞寿命需求的寿命策略。该方法已在研制实践中应用,取得了良好效果,有效地解决了上述难题,对其他型号发动机的研制具有有益的借鉴作用。  相似文献   

7.
张栋 《航空学报》2000,21(3):196-201
首次成功地进行了构件在当量环境谱下的加速腐蚀试验,取得了防护层日历有效期和基体腐蚀扩展速率;建立了一套由试验数据估算日历首翻期、日历翻修间隔、日历总寿命的方法和公式;提出了由使用中真实的腐蚀损伤数据来估算日历首翻期的方法;在构件加速腐蚀试验和使用中真实腐蚀损伤数据统计处理的基础上,给出了 HX型机群日历寿命。  相似文献   

8.
根据安全寿命设计规范规定的要求;依据实际试验、使用、实测及对比情况,本文对直X机机械类产品前、主起落架使用寿命期内的首翻期进行了分析和论证。  相似文献   

9.
雷达自然寿命初探   总被引:1,自引:0,他引:1  
通过对雷达失效物理机制的分析,根据雷达首翻期数据,在限定的维修方式下,建立了雷达的自然寿命模型并针对某型雷达进行了计算,这种方法对确定雷达的自然寿命有一定的参考作用.  相似文献   

10.
针对军用直升机普遍存在利用率低,使用时间少,停场时间长,日历时限制约飞机使用情况比较普遍的问题,通过大量调查研究和分析计算,最终得出俄罗斯制造的某型直升机机体首翻日历期寿命由7年延长至9年是可行的结论.  相似文献   

11.
飞行器服役完整性(对于军用飞行器也称为作战完整性)更综合地表征了飞行器在服役(作战)使用过程中的质量特性。本文首先介绍了飞行器服役(作战)完整性概念的提出过程,讨论了飞行器服役(作战)完整性的基本内涵和基本特性,阐明了飞行器服役(作战)完整性是飞行器服役(作战)适用性与飞行器服役(作战)效能发挥的基础。然后介绍了飞行器服役(作战)完整性的三种表征参数:飞行器固有完好率、飞行器固有健康度、飞行器服役(作战)完整度,并梳理了飞行器服役(作战)完整性优化设计的基本方法。最后提出了飞行器服役(作战)完整性的控制原理,指出了飞行器服役(作战)完整性发展的基础、研究方法和目前我国航空航天领域急需研究和发展的方向。  相似文献   

12.
The flow control of hydraulic transformers is a great challenge.To meet this challenge,a new kind of hydraulic transformer,variable hydraulic transformer(VHT),is proposed in this work.This paper focuses on the power characteristics of the newly proposed VHT,including instantaneous power,average power,power pulsation,and efficiency.In the analyses,the concepts of efficiency,input power,output power,starting angle,and ceasing angle are defined or redefined.To investigate the power characteristics,their models are derived by considering the governing factors such as the control angle of the swash plate and the structure of the port plate.This work highlights that the load flow can be adjusted by adjusting the control angle of the swash plate,and the power characteristics at the B-port produce a remarkable change.In addition,the VHT has a starting angle and a ceasing angle,and these two angles can be adjusted by the influencing factors.The results reveal that the power pulsation and the jump points of the instantaneous power are the primary causes of a less smooth work.Then,it is shown that the control angle of the port plate,the control angle of the swash plate,and the pressures at the ports are the three key elements for a stable operation.The results also reveal that the adjustment of the influencing factors can improve the efficiency.  相似文献   

13.
高超声速飞行器表面温度分布与气动热耦合数值研究   总被引:4,自引:0,他引:4  
针对高超声速飞行器热防护设计中的高温气体非平衡效应问题和气动热环境精确预测问题,基于流场的非平衡Navier-Stokes方程、表面的能量守恒方程和内部的热传导方程,考虑流场的非平衡效应、表面的热辐射效应、催化效应和烧蚀效应以及热防护层内部的热传导效应,建立了初步的表面温度分布与气动热的耦合计算方法,完善了高超声速飞行器气动物理流场计算软件(AEROPH_Flow)。在表面材料为碳-碳(C-C)条件下,对飞行高度为65km和飞行速度为8,10km/s的半球以及飞行高度为50km和飞行速度为8km/s的球锥模型,开展了表面温度分布与气动热的耦合计算,验证了计算方法和计算软件,分析了表面温度分布对气动热环境的影响。研究结果表明:表面温度分布对气动热的计算结果有较大影响,在气动热环境的预测中,不仅要考虑热化学非平衡效应和表面催化效应的影响,还要考虑表面温度分布的影响,最好是采用表面温度分布与气动热耦合计算的方法,以减小表面温度分布对气动热计算结果的影响。为此,需要发展完善非平衡流场/表面催化和烧蚀/热传导温度场(气/表/固)的计算模型、耦合求解技术和计算软件,实现对高超声速飞行器的真实飞行条件下高温气体非平衡效应和气动热环境的精确模拟。  相似文献   

14.
通过使用波形测量手段和最小二乘直线拟合方法,对三角波信号的波峰、波谷、中值、幅度、频率、沿斜率、沿线性度、对称性等指标进行了精确评价,详细讨论了方法的实现过程以及有关技术问题,并对各项参数指标进行了不确定度分析。实验验证结果表明了该方法的有效性和实用性,该方法可应用到三角波信号源的性能指标评价中。  相似文献   

15.
分层比对分开分层旋流预混火焰结构的影响   总被引:2,自引:2,他引:2  
刘泽宇  张弛  韩啸  林宇震 《航空学报》2018,39(3):121692-121692
为了充分认识分开分层旋流预混火焰的特性,实验研究了分层比(SR)对分开分层旋流预混火焰宏观结构的影响。实验以甲烷为燃料在常温常压下展开,通过改变分层比研究了用CH*化学发光信号表征的火焰宏观结构的变化,包括稳火方式、焰锋、主释热区等。观察到火焰的稳火方式以及主释热区的位置发生了变化。在角涡回流区、台阶回流区和中心回流区的共同作用下,随着分层比的变化,分别在中心体下游、台阶内外沿和主燃级通道出口外沿存在稳火点,并依此首次提出和以往研究中分层旋流预混火焰相比不同的6种类型分开分层旋流预混火焰模式:Y型、V型、对称D型、多褶型、窄W型和宽W型。结果表明,火焰宏观结构受分层比影响而发生变化,可以用甲烷的富燃、贫燃和可燃极限来解释分层比对火焰宏观结构以及自激振荡的影响。  相似文献   

16.
采用集中质量法,建立了齿轮-转子-轴承系统的六自由度的多间隙弯扭耦合的非线性振动模型,模型中考虑了齿面摩擦、时变啮合刚度、齿侧间隙和支承间隙等因素.根据系统在转速、齿侧间隙、齿面摩擦以及啮合阻尼等参数下的全局分岔图和Poincare截面图,研究了各参数对系统分岔特性的影响.分析可知:在一定的齿侧间隙、啮合阻尼和低齿面摩擦因数下,随着转速的逐渐增加,系统通过拟周期分岔进入混沌.当齿面摩擦因数逐渐增加时,系统由良好润滑状态进入干摩擦,系统的混沌运动区域也因此在一临界点产生裂变,且通过激变的途径二次进入混沌;在一定的转速、啮合阻尼和齿面摩擦因数下,随着齿侧间隙的增加,系统通过激变进入混沌,同时可以发现,系统产生混沌和分岔主要发生在量纲一齿侧间隙小于3和大于7的区域,且最终通过倒分岔锁相为周期1运动;在一定的转速、啮合阻尼和齿侧间隙的条件下,随着齿面摩擦因数的增加,系统通过激变进入混沌.同时发现,随着啮合阻尼的增加,混沌区域逐渐裂变成2个、3个和4个混沌窗口,但最终都经由拟周期锁相为周期1运动.   相似文献   

17.
临近空间低动态飞行器控制研究综述   总被引:2,自引:0,他引:2  
郭建国  周军 《航空学报》2014,35(2):320-331
针对临近空间低动态飞行器出现的新的控制问题,分析和总结了临近空间低动态飞行器控制进展状况和发展趋势。首先,基于飞艇和浮空器等临近空间低动态飞行器的特点,归纳总结了其飞行控制问题。在此基础上,结合这类飞行器的当前发展状况,从飞行器控制角度出发,着重介绍总结了临近空间低动态飞行器在控制系统执行机构配置、数学模型、姿态控制、定点控制、速度控制、航迹优化、轨迹跟踪控制、升空和返回控制、压力控制,以及应用的多种控制策略的研究进展。最后,在已有的控制问题研究发展的基础上,提出了临近空间低动态飞行器在控制研究领域所要解决和关注的若干问题。  相似文献   

18.
从荔波喀斯特世居民族的自然崇拜入手,系统地介绍了苗、水、瑶、布依、汉5个主体民族自然崇拜信仰的由来、背景及其主要构成与维系,以及自然崇拜信仰对喀斯特森林生态系统的保存、延续、繁衍所起到的作用.并从人类社会发展的进程、人与自然及其社会和谐的境界、绿色文化理念的内涵等生态人类学视角对荔波喀斯特世居民族自然崇拜信仰的效应与历史地位进行了评述.  相似文献   

19.
吸气式高超声速飞行器大迎角气动特性分析   总被引:1,自引:0,他引:1  
吸气式高超声速飞行器在飞行过程中受到大气紊流等外部干扰的作用时,飞行姿态很可能会出现大迎角情况。针对大迎角飞行时飞行器可能出现的气动问题,对一种典型吸气式高超声速飞行器的流场进行了数值模拟。以雷诺平均Navier-Stokes(RANS)方程为控制方程,采用标准k-ε湍流模型求解,得到其流场特征和气动特性。重点针对大迎角情况,分别对整机气动特性、进气道性能和全动尾翼气动性能进行了分析,并结合流场特征作出解释。结果表明,机身和发动机之间存在气动/推进耦合现象。大迎角下飞行器的气动参数表现出非线性特性,升阻比减小,整机纵向表现为静不稳定,且不稳定性随迎角增大而增大;进气道性能在大迎角下降低,从而导致发动机推力下降,不利于发动机的正常工作,但却适当降低了整机的纵向静不稳定度;全动尾翼操纵效率降低从而使得配平难度增大。  相似文献   

20.
为了了解点火参数对某2冲程航空活塞煤油发动机燃烧及温度场的影响,利用GT-Power和Fire软件对该发动机整机及燃烧室分别建立了仿真模型,选取扭矩、功率以及缸压数据验证了该模型的正确性,并对发动机在6000 r/min、全负荷工况下的燃烧和温度场分布等特性进行分析.结果表明:当点火时刻由335°CA变化至331°CA时,缸内混合气燃烧放热量增多,放热率峰值增大,放热率峰值对应曲轴转角的提前量变大,燃烧放热速率加快,混合气温度和压力上升变快,高温区范围增大;当点火能量由28.02 mJ增加至46.73 mJ时,双火花塞附近的温度升高,火花塞点火产生的火核尺寸增大,缸内燃烧温度与压力升高,燃烧放热速率加快,缸内高温区分布范围增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号