首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 804 毫秒
1.
正空间碎片与航天器的平均撞击速度为10公里/秒,这么高的撞击速度,现有材料难以"扛得住"。那么如何对这种撞击进行防护呢?空间碎片的防护实验证明,超高速弹丸(碎片)与薄靶撞击过程中,会发生破碎、熔化、气化甚至等离子体化等,形成高速运动的物质云团,称为碎片云。弹丸和薄靶  相似文献   

2.
空间碎片超高速碰撞数值模拟的SPH方法   总被引:8,自引:0,他引:8  
利用光滑质点动力学SPH(Smoothed Particle Hydrodynamics)方法对Whipple防护结构在空间碎片超高速碰撞下的物理过程进行了数值模拟.在数值模拟中,为了充分发挥SPH方法和有限元方法FEM(Finite Element Method)的优点,利用有限元单元和SPH节点混合建模,将有限元单元和SPH节点(SPH nodes)通过定义接触条件相结合,在大变形和飞溅区域采用SPH节点建模,而小变形区域则采用有限元单元建模,从而大大节省求解时间,提高计算效率.计算结果表明,弹丸在穿透前板后,形成二次碎片,碎片云经膨胀和拉长,对后板造成轻微的损伤,这和文献的相关试验数据是符合的.利用SPH方法对空间碎片的超高速碰撞过程进行数值模拟,不仅很好地预测了Whipple防护结构的破坏情况,而且对整个碰撞过程,包括碎片云的形成、膨胀和拉长过程都有形象的描述,符合超高速碰撞的试验测试结果.  相似文献   

3.
微流星体及空间碎片的高速撞击威胁着长寿命、大尺寸航天器的安全运行,导致其严重的损伤和灾难性的失效。为精确估计微流星体及空间碎片高速撞击防护屏所产生碎片云对舱壁的损伤,必须确定碎片云中三种状态材料的特性,建立了碎片云特性分析模型,分别计算了柱状弹丸撞击防护屏所产生碎片云以及碎片云中弹丸和防护屏材料三种状态物质的质量分布。通过计算分析可见,弹丸以不同速度撞击防护屏所产生碎片云三种状态物质的质量分布是不同的,速度增大,液化和气化增强,对靶件的损伤小。而在速度小于7km/s时,碎片云以固体碎片的形式存在,对靶件的损伤大。  相似文献   

4.
以动能撞击防御潜在威胁小行星概念为背景,采用物质点法(Material Point Method,MPM)模拟了铝弹高速撞击S型小行星的过程,将撞击结果导入引力N体–离散元动力学模型中,对其后续演化过程进行仿真,并分析了撞击后碎片对地球的威胁指数。结果显示小行星在高速撞击的作用下部分破碎,大量碎片以与撞击方向相反的速度向外喷射,从而提升了小行星的撞击偏移效果。研究采用了两种不同结构的小行星模型:完整结构(monolithic structure)的小行星在遭受撞击后会喷射出比原小行星小得多的碎片,而碎石堆结构(rubble-pile structure)的小行星在撞击作用下可分裂成大小和速度分布较为均匀的碎片。威胁指数的分析表明动能撞击方式确实有效减小了小行星的威胁程度,撞击后的最大剩余碎片可被成功偏移至安全轨道,但仍有部分碎片会与地球相撞。与完整结构相比,针对碎石堆结构小行星的撞击防御的总体效果更好,次生灾害主要为大质量碎片的撞击。研究方法可用于未来开展防御小行星的动能撞击任务的撞击条件选择和撞击结果预估。  相似文献   

5.
超高速撞击条件下铝合金材料参数识别方法   总被引:1,自引:0,他引:1  
在超高速撞击过程中,金属材料在大变形、高应变率条件下的材料参数获取是一个研究难点.在确定Steinberg本构模型和Gruneisen状态方程前提下,结合已有的物理试验结果,采用SPH(Smooth Particle Hydrodynamic)算法实现超高速撞击问题的数值模拟,定义优化目标为物理试验结果和仿真结果之间的相对误差值,利用连续响应面法SRSM(Successive Response Surface Method)对铝合金6061的Steinberg本构模型中的4个关键参数进行优化识别计算.经过识别的材料参数与物理试验的结果近似程度更好,证明了这种方法的正确性和可靠性.   相似文献   

6.
为确定推进剂爆轰作用下贮箱爆炸碎片的初始速度,基于能量守恒定律,考虑爆炸碎片动能、爆轰产物动能和内能、贮箱壳体的破坏能及其膨胀做功所消耗的能量,建立了贮箱爆炸碎片初始速度(FIV)模型。FIV模型与典型经验公式计算结果、带壳炸药爆炸试验数据吻合较好,验证了模型有效性。采用量纲分析法确定FIV模型中影响碎片初始速度的关键参量,基于AUTODYN软件进行数值仿真,分析贮箱壳体高径比、厚径比以及空气密度等参量对碎片初始速度的影响。结果表明:爆炸碎片初始速度随着壳体高径比增大迅速减小,当高径比大于1.50时,速度衰减变缓;碎片初始速度随着壳体厚径比增加近似呈线性减小;当爆炸高度小于20 km时,随着爆炸高度增大,空气密度减小,爆炸碎片的初始速度增大;在爆炸高度大于40 km时,空气非常稀薄,可以忽略壳体膨胀做功对碎片初始速度的影响。   相似文献   

7.
高速撞击充气压力容器前壁损伤数值模拟   总被引:1,自引:0,他引:1  
针对空间碎片超高速撞击充气压力容器前壁损伤问题,应用非线性动力学分析软件AUTODYN采用拉格朗日方法对球形弹丸撞击球形压力容器前壁穿孔进行了数值模拟研究。在建模过程中通过对容器壁内侧施加压力边界条件来模拟由于内充气体的作用在容器壁内产生的应力场,并通过与试验结果的比较验证了数值模拟方法的有效性。在此基础上针对容器的内充气体压力、球形弹丸直径及撞击速度对充气压力容器前壁穿孔的影响进行了研究。结果表明:在一定的气体压力下,气体压力对压力容器前壁穿孔直径与穿孔形态的影响可以忽略不计;而撞击速度及弹丸直径对穿孔直径及穿孔形态有着较大的影响,当撞击速度大于3km/s时,撞击穿孔边缘开始有裂纹产生,并且穿孔直径与裂纹直径随着弹丸直径及撞击速度的增加而增大。利用压力容器前壁穿孔的数值模拟结果进行计算可以得出当容器受到撞击速度大于3km/s的弹丸撞击后比撞击速度不大于3km/s时更易发生破坏。  相似文献   

8.
空间碎片超高速撞击动力学建模与数值仿真技术   总被引:12,自引:0,他引:12  
阐明了空间碎片超高速撞击数值仿真技术研究的目的、意义和国内外发展状况 ;重点论述了空间碎片超高速撞击数值仿真技术的主要研究内容、技术指标和具体实施途径 ,从而为研究的深入开展提供了技术依据和指导原则  相似文献   

9.
针对在轨运行航天器在空间等离子体环境和空间带电粒子活动下诱发航天器表面梯度电势存在的客观现实,航天器在空间碎片的撞击下会诱发表面带电或深层电介质带电的航天器放电。为了在实验室模拟航天器表面存在电势差的真实情况,采用对航天器外表面分割的方法,在分割的表面间预留不同间距且在2靶板间加装电阻的方法创造具有梯度电势的高电势2A12铝板作为靶板。利用自行构建的梯度电势靶板的充放电测试系统、超高速相机采集系统和二级轻气炮加载系统,开展高速撞击梯度电势2A12铝靶的实验室实验。实验中,弹丸以入射角度为60°(弹道与靶板平面的夹角)、撞击速度约为3 km/s的条件撞击间距分别为2、3、4和5 mm的2A12铝高电势靶板,利用电流探针和电压探针采集放电电流和放电电压。实验结果表明:放电产生的等离子体形成了高电势与低电势靶板间的放电通道,且在梯度电势靶板间距分别为2、3 mm时诱发了一次放电,放电电流随高低电势靶板间间距的增加而减小;在梯度电势靶板间距分别为4、5 mm时诱发了二次放电,放电电流随高低电势靶板间间距的增加变化不明显。   相似文献   

10.
针对航天器空间碎片防护问题,基于缩放实验方法,开展了7 km/s以上超高速碰撞仿真研究.建立了单板和Whipple防护结构的仿真模型,并对铝-铝撞击问题和镉-镉撞击问题进行了多工况仿真.通过实验结果与数值仿真的对比,表明了数值仿真技术的正确性,并从仿真角度验证了缩放实验方法的有效性.对缩放实验方法的适用性进行了仿真验证,结果表明该方法对弹丸形状适用性较好,对3~4 km/s以上撞击速度的适用性较好,但对Whipple防护结构后板存在一定误差.分析了Whipple结构后板的失效模式,提出了失效模式的不连续性导致了缩放实验方法的误差.最后通过数值仿真计算了Whipple结构7 km/s以上弹道极限特性,提出了失效模式的不连续性造成了在该速度段弹道极限曲线的分叉现象.  相似文献   

11.
One of the primary mission risks tracked in the development of all spacecraft is that due to micro-meteoroids and orbital debris (MMOD). Both types of particles, especially those larger than 0.1 mm in diameter, contain sufficient kinetic energy due to their combined mass and velocities to cause serious damage to crew members and spacecraft. The process used to assess MMOD risk consists of three elements: environment, damage prediction, and damage tolerance. Orbital debris risk assessments for the Orion vehicle, as well as the Shuttle, Space Station and other satellites use ballistic limit equations (BLEs) that have been developed using high speed impact test data and results from numerical simulations that have used spherical projectiles. However, spheres are not expected to be a common shape for orbital debris; rather, orbital debris fragments might be better represented by other regular or irregular solids. In this paper we examine the general construction of NASA’s current orbital debris (OD) model, explore the potential variations in orbital debris mass and shape that are possible when using particle characteristic length to define particle size (instead of assuming spherical particles), and, considering specifically the Orion vehicle, perform an orbital debris risk sensitivity study taking into account variations in particle mass and shape as noted above. While the results of the work performed for this study are preliminary, they do show that continuing to use aluminum spheres in spacecraft risk assessments could result in an over-design of its MMOD protection systems. In such a case, the spacecraft could be heavier than needed, could cost more than needed, and could cost more to put into orbit than needed. The results obtained in this study also show the need to incorporate effects of mass and shape in mission risk assessment prior to first flight of any spacecraft as well as the need to continue to develop/refine BLEs so that they more accurately reflect the shape and material density variations inherent to the actual debris environment.  相似文献   

12.
微流星及空间碎片的高速撞击威胁着长寿命,大尺寸航天器的安全运行,导致其严重的损伤和灾难性的失效,为精确估计微流星及空间碎片主速撞击防护屏产生的碎片对舱壁的损伤,必须确定碎片云速度特性。文章在冲量和能量守恒的基础上,建立了碎片速度性分析模型,研究了碎片云的速度特性,得到了碎片云材料传播及碎片云喷射角随弹丸撞击速度的变化规律。  相似文献   

13.
As the pace of human exploration and utilization of space continues to accelerate, space debris gradually becomes an inevitable problem affecting and threatening human space activities. When space debris strikes the spacecraft bulkhead, determining the impact source location timely and accurately is the foundation of the repair damage, and is also of great importance for the safety of astronauts' life. This paper analyzed the wave propagation law in thin plates, established a lightweight sensor array using PVDF (Polyvinylidene fluoride) circular thin-film sensors, and used a two-stage light-gas gun loading system to conduct hypervelocity collision localization experiments on impacting 2A12 aluminum plates to study the effects of sensor array radius and sensor size on localization results. The results show that the smaller the radius of the PVDF sensor array is, the more accurate the positioning result is under the premise of the same size of the PVDF circular film sensor array. On the premise of the same PVDF sensor array arrangement, the larger the PVDF circular membrane sensor is, the more accurate the positioning result is. ABAQUS finite element software is used to study the stress wave propagation of aluminum ball impacting aluminum plate at high speed, simulating space debris impacting spacecraft. The stress waveform obtained from the simulation is in good agreement with the experiment, which shows the accuracy of the numerical simulation method.  相似文献   

14.
Orbital debris is known to pose a substantial threat to Earth-orbiting spacecraft at certain altitudes. For instance, the orbital debris flux near Sun-synchronous altitudes of 600–800 km is particularly high due in part to the 2007 Fengyun-1C anti-satellite test and the 2009 Iridium-Kosmos collision. At other altitudes, however, the orbital debris population is minimal and the primary impactor population is not man-made debris particles but naturally occurring meteoroids. While the spacecraft community has some awareness of the risk posed by debris, there is a common misconception that orbital debris impacts dominate the risk at all locations. In this paper, we present a damage-limited comparison between meteoroids and orbital debris near the Earth for a range of orbital altitude and inclination, using NASA’s latest models for each environment. Overall, orbital debris dominates the impact risk between altitudes of 600 and 1300 km, while meteoroids dominate below 270 km and above 4800 km.  相似文献   

15.
When the impact risk from meteoroids and orbital debris is assessed the main concern is usually structural damage. With their high impact velocities of typically 10–20 km/s millimeter or centimeter sized objects can puncture pressure vessels and other walls or lead to destruction of complete subsystems or even whole spacecraft. Fortunately chances of collisions with such larger objects are small (at least at present). However, particles in the size range 1–100 μm are far more abundant than larger objects and every orbiting spacecraft will encounter them with certainty. Every solar cell (8 cm2 area) of the Hubble Space Telescope encountered on average 12 impacts during its 8.25 years of space exposure. Most were from micron sized particles.  相似文献   

16.
In order to obtain a better understanding and model of the natural and artificial particulate environment from measurements of impact damage features on returned spacecraft materials, it is necessary to be able to determine how the size and shape of an impact feature are related to the parameters of the impacting particle. The AUTODYN-3D hydrocode has been used to study the effects of projectile density, velocity and impact angle on the depth, diameter and ellipticity of the impact craters. The results are used to determine the distributions of crater depth to crater diameter ratios and of crater ellipticities to be expected on an aluminium surface exposed to an isotropic distribution of incident particles of given densities and velocities. Comparison of these calculated distributions with those observed for craters on aluminium clamps on various faces of the Long Duration Exposure Facility shows that particles with a wide range of densities, including significant proportions both greater and smaller than that of aluminium, were responsible for these craters.  相似文献   

17.
Micro-meteoroid and space debris impact risk assessments are performed to investigate the risk from hypervelocity impacts to sensitive spacecraft sub-systems. For these analyses, ESA’s impact risk assessment tool ESABASE2/Debris is used. This software tool combines micro-particle environment models, damage equations for different shielding designs and satellite geometry models to perform a detailed 3D micro-particle impact risk assessment. This paper concentrates on the impact risk for exposed pressurized tanks. Pressure vessels are especially susceptible to hypervelocity impacts when no protection is available from the satellite itself. Even small particles in the mm size range can lead to a fatal burst or rupture of a tank when impacting with a typical collision velocity of 10–20 km/s. For any space mission it has to be assured that the impact risk is properly considered and kept within acceptable limits. The ConeXpress satellite mission is analysed as example. ConeXpress is a planned service spacecraft, intended to extend the lifetime of telecommunication spacecraft in the geostationary orbit. The unprotected tanks of ConeXpress are identified as having a high failure risk from hypervelocity impacts, mainly caused by micro-meteoroids. Options are studied to enhance the impact protection. It is demonstrated that even a thin additional protective layer spaced several cm from the tank would act as part of a double wall (Whipple) shield and greatly reduce the impact risk. In case of ConeXpress with 12 years mission duration the risk of impact related failure of a tank can be reduced from almost 39% for an unprotected tank facing in flight direction to below 0.1% for a tank protected by a properly designed Whipple shield.  相似文献   

18.
Extensive studies of over 100 impact sites on aluminium foils and mesh supports of the Timeband Capture Cell Experiment (TiCCE) on the European Retrievable Carrier (EuReCa) spacecraft were conducted with scanning electron microscope and energy dispersive X-ray spectrum analyser. Chemical elements of residues in and around the perforations and craters were examined to identify the origin of impactors. 73 % of the impacts were classified; the minimum of 15 % was due to natural particle impacts and the rest indicated high silicon presence. Possible origins of these silicon profiles were discussed. For micrometeoroid craters, the depths to diameter ratios were compared with those of meteoroid and orbital debris impacts on the Solar Maximum Mission satellite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号