首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prebiotic synthesis of organic compounds using a spark discharge on various simulated prebiotic atmospheres at 25 degrees has been studied. Methane mixtures contained H2 + CH4 + H2O + N2 + NH3 with H2/CH4 molar ratios from 0 to 4 and pNH3 = 0.1 torr. A similar set of experiments without added NH3 was performed. The yields of amino acids (1.2 to 4.7% based on the carbon) are approximately independent of the H2/CH4 ratio and the presence of added NH3, and a wide variety of amino acids are obtained. Mixtures of H2 + CO + H2O + N2 and H2 + CO2 + H2O + N2, with and without added NH3, all give about 2% yields of amino acids at H2/CO and H2/CO2 ratios of 2 to 4. For the H2/CO and H2/CO2 ratios less than 1, the yields fall off drastically to as low as 10(-3)%. Glycine is almost the only amino acid produced from CO and CO2 atmospheres. These results show that the maximum yield is about the same for the three carbon sources at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. In addition, CH4 gives a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these results indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde parallel the amino acid results, with yields of HCN and H2CO as high as 13% based on the carbon. Ammonia is also produced from N2 in experiments with no added NH3 in yields as high as 4.9%. These results show that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges. The amount of ammonia formed by hydrolysis of HCN and various nitriles may have exceeded that formed directly in electric discharges.  相似文献   

2.
Recent results of theoretical investigations related to generation of high-energy (0.1-1 keV) photons in comets due to production of high-temperature (3×105-107 K) plasma clots from collisions of cometary and interplanetary grains at high relative velocities (70-700 km s−1 at heliocentric distances R=0.01-1 AU) are summarized and main features of the process are marked.  相似文献   

3.
We investigated the physical properties of molecular gas in the nuclear region of M51 (Seyfert 2). We obtained an aperture synthesis 13CO(J = 1 − 0) image using the Nobeyama Millimeter Array (NMA), and compared it with NMA 12CO(J = 1 − 0) and HCN(J = 1 − 0) maps at similar spatial resolutions. Within a radius of 180 pc from the center, the 13CO(1 − 0) integrated intensity was found to be 3 times weaker than that of HCN(1 − 0). Large-Velocity-Gradient (LVG) calculations suggest that the observed high HCN(1 − 0)/13CO(1 − 0) intensity ratio would arise from dense (nH2 ∼ 105 cm−3) and hot (Tkin ≳ 300 K) molecular clouds in the nuclear molecular disk. We also observed in the 12CO(1 − 0), (3 − 2), 13CO(1 − 0), and (3 − 2) lines using the Nobeyama 45m and JCMT 15m telescopes. We detected weak 13CO lines as well as strong 12CO lines. The LVG calculations assuming a two-component model suggest that there is a large amount of low-density (nH2 ∼ 3 − 6 × 102 cm−3), low-temperature (Tkin ∼ 20 – 50 K) gas, and a small amount of high-density (nH2 ≳ 104 cm−3), high-temperature (Tkin ≳ 500 K) gas. The existence of the high-density and high-temperature component, although having a quite small beam filling factor, supports the aperture synthesis observation results mentioned above. Since this dense, hot gas is located in the nuclear molecular disk around the Active Galactic Nucleus (AGN), it may be heated by the strong X-ray radiation and/or by the shock induced by the radio jet.  相似文献   

4.
A CH4-N2-H2OV gas mixture was subjected to a high voltage (20 kV), high frequency (0.3 MHz) electric discharge. The energy input in the electric discharge was varied from 0.016 to 3.048 MJ mol-1. The chemical yields (G), expressed as the number of molecules formed or destroyed per 100 eV of energy input were calculated for several products. The G values calculated at the lowest energy input were (-CH4) = 6.48; (-N2) = 2.51; (C2H2) = 1.16; (HCN) = 0.215; (CH3CHO) = 0.115; (CH3CH2CHO) = 0.00161; (CH3(CH2)2CHO) = 0.0165; ((CH2CO2H)2) = 0.0000339; (CH4 --> Solid material) = 0.196; (N2 --> Solid material) = 0.00355. This is the first report in prebiotic studies in which the G values of various products in electric discharge experiments are determined. This type of study is needed in order to get a better insight into the relative role of electric discharges on the primitive Earth.  相似文献   

5.
Laboratory experiments simulating organic synthesis in Neptune's atmosphere have been performed. We have submitted to a spark discharge gaseous mixtures containing 9 mbar of molecular nitrogen and 3 mbar of methane (the p(N2)/p(CH4) ratio is compatible with upper limits in Neptune's stratosphere) with varying quantities of molecular hydrogen. The spark discharge is used to model the energetic electrons produced by the impact of cosmic rays on the high atmosphere of Neptune. HCN is synthesized in the described experimental conditions, even with a low mixing ratio of molecular nitrogen. Studying the variation of HCN production with the initial composition of the gas mixture and extrapolating to high mixing ratio of molecular hydrogen allows to estimate HCN production in Neptune's atmosphere. The computed HCN production flux is 7x10(7) m-2 s-1, which is two orders of magnitude lower than the value predicted by chemical models for an internal source of N atoms. The major uncertainty in our extrapolation is the energetic distribution of electrons, implicitly assumed comparable in the discharge and in Neptune's atmosphere. We note that this distribution is also a source of uncertainty in chemical models. The chemical mechanism responsible for the local formation of HCN in the stratosphere probably occurs in the reactor too. We propose a simple characterization of the spark discharge. We thus link the molecular nitrogen dissociation cross section by electron impact to the measured parameters of the experiments (current, voltage, initial partial pressures) and to the resulting HCN partial pressures. However, other laboratory experiments with larger hydrogen pressures, requiring a more powerful electric source, have to be performed to yield a value of the cross section.  相似文献   

6.
Simulated microgravity (SMG) can inhibit proliferation and enhance microcystin production of Microcystis aeruginosa. We investigated the role of nitric oxide (NO) in regulating the SMG induced changes of proliferation, photochemical system II photochemical activity, pigment, soluble protein and microcystin production in M. aeruginosa. M. aeruginosa was exposed to 0.1 mM sodium nitroprusside (SNP, NO donor) or 0.02 mM 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO, NO scavenger) alone or in combination with SMG for 48 h. SMG and SNP inhibited the growth of M. aeruginosa while c-PTIO had no effect on cell number. As to yield, the negative effect of SMG was augmented by SNP and suppressed by c-PTIO. The intracellular concentrations of chlorophyll a, carotenoid, phycocyanin, soluble protein and microcystin were increased by SMG after 48 h. The effects of SMG on these metabolic processes could be enhanced by SNP and be partly eliminated by c-PTIO. Moreover, SNP and c-PTIO only functioned in these biochemical processes under SMG, unlike in the regulation of cell proliferation and yield. These results showed that the effects of SMG could be enhanced by adding exogenous NO and be mitigated by scavenging endogenous NO, revealing the involvement of NO in the changes in biochemistry processes induced by SMG in M. aeruginosa.  相似文献   

7.
The Nobeyama Millimeter Array has been used to map CO(1-0) and HCN(1-0) emission in nearby Seyfert galaxies. A wide variety of molecular gas distributions are found, and there appears to be no “typical” gas distribution either in type-1 Seyferts or type-2s. All the gas distributions and kinematics in the observed Seyferts can be understood as a response to a non-axisymmetric potential in the central regions, suggesting that a small scale (a few 100 pc — a few kpc) distortion of the underlying potential is necessary for Seyfert activity, although it is not a sufficient condition. Circumnuclear star formation in the host of the observed Seyferts can occur via gravitational instabilities of the molecular gas, as in the case of star forming regions in non-Seyfert galaxies. Our results may support the idea that the host galaxies of Seyferts (both type-1s and 2s) and non-Seyferts are the same in terms of the fuel and trigger of star formation. Near the center of Seyfert nuclei (r < a few 100 pc), we find that the molecular gas tends to be gravitationally stable. We find that the RHCN/CO value ranges over an order of magnitude, from 0.086 to 0.6 among Seyfert galaxies. It seems that the presence of kpc scale jet/outflows is related to the extremely high RHCN/CO values.  相似文献   

8.
Changes in the vacuolation in root apex cells of soybean (Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Spaceflight and ground control seedlings were grown in the absence or presence of KMnO4 (to remove ethylene) for 6 days. After landing, in order to study of cell ultrastructure and subcellular free calcium ion distribution, seedling root apices were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH)6] in 0.1 M K2HPO4 buffer with an osmolarity (calculated theoretically) of 0.45 and 1.26 osmol. The concentrations of ethylene in all spaceflight canisters were significantly higher than in the ground control canisters. Seedling growth was reduced in the spaceflight-exposed plants. Additionally, the spaceflight-exposed plants exhibited progressive vacuolation in the root apex cells, particularly in the columella cells, to a greater degree than the ground controls. Plasmolysis was observed in columella cells of spaceflight roots fixed in solutions with relatively high osmolarity (1.26 osmol). The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells was higher than the surrounding fixative solution. A decrease in osmotic potential and/or an increase in turgor potential may have induced increases in cell water potential. However, the plasmolysed (i.e. non-turgid) cells implied that increases in water potential were accompanied with a decrease in osmotic potential. In such cells changes in vacuolation may have been involved to maintain turgor pressure or may have been a result of intensification of other vacuolar functions like digestion and storage.  相似文献   

9.
We have observed the CS (2-1) and (3-2), and 13CS (2-1) transitions toward the Galactic Center molecular cloud Sgr B2 which consists of several clumps with different chemical properties. We have newly identified a cloud at 30 km s-1 from a CS (2-1) optical depth map. This cloud lies 1.5' South from the Sgr B2 (M) position and has a diameter of approximately 2.5 pc and a total column density of 7 x 10(23) cm-2 assuming optically thin emission of the 13CS (2-1) line. Towards the 2'N Cloud no evidence for a density enhancement is found, which suggests that the strong emission from HNCO and HCO+2 is due to chemical effects. The main isotopic CS lines show broad wing components similar to previous studies, but we find rotational temperatures Trot(CS) < 10 K at this region.  相似文献   

10.
To determine the range of the threshold acceleration (a-threshold) for the gravitropic stimulation of Lepidium sativum L. roots and hypocotyls, experiments were performed on a centrifuge-clinostat with two-orthogonal axes. The rotation rate of the clinostat was 4 rpm (< or = 1.8 x 10(-4) g), while that of the centrifuge was from 3 to 17 rpm (3 x 10(-3) to 10(-1) g). The gravitropic response was determined: (i) after growth of roots and hypocotyls in their normal vertical position and subsequent gravitropic stimulation for 3 h by accelerations of 4 x 10(-3) to 10(-1) g, and (ii) after continuous stimulation in the lateral direction by centripetal accelerations of 4 x 10(-3) to 10(-1) g. The a-threshold was defined by an extrapolation of the regression line of R = p + rx, where x was either ln a or l/a for 3 h or a continuous stimulation, respectively. The a-threshold estimated after 3 h stimulation was equal to 2.6 x 10(-3) g for roots and 3.1 x 10(-3) g for hypocotyls. The threshold accelerations that were unable to evoke a gravitropic response even with continuous stimulation of cress roots and hypocotyls were approximately 3.1 x 10(-3) g and 3.6 x 10(-3) g, respectively. Increasing the stimulation acceleration up to 4.1 x 10(-3) g led to a statistically confirmed gravitropic response of a definite proportion of both the root and hypocotyl populations. In the experiments where acceleration and stimulation time were variable, the threshold dose (D-threshold) for roots was determined to be about 14 to 22 g x s, depending on the stimulation duration and the range of accelerations. The kinetics of gravitropic response at a near-threshold acceleration (4 x 10(-3) to 1.9 x 10(-2) g) differed from that at 1 g (horizontal stimulation). At low forces, the maximal response dependent on the magnitude of acceleration could not be enhanced by increasing the stimulation time up to at least 210 min.  相似文献   

11.
To obtain basic data for adequate air circulation for promoting plant growth in closed plant production modules in bioregenerative life support systems in space, effects of air velocities ranging from 0.1 to 0.8 m s-1 on photosynthesis in tomato seedlings canopies were investigated under atmospheric CO2 concentrations of 0.4 and 0.8 mmol mol-1. The canopy of tomato seedlings on a plug tray (0.4 x 0.4 m2) was set in a wind-tunnel-type chamber (0.6 x 0.4 x 0.3 m3) installed in a semi-closed-type assimilation chamber (0.9 x 0.5 x 0.4 m3). The net photosynthetic rate in the plant canopy was determined with the differences in CO2 concentrations between the inlet and outlet of the assimilation chamber multiplied by the volumetric air exchange rate of the chamber. Photosynthetic photon flux (PPF) on the plant canopy was kept at 0.25 mmol m-2 s-1, air temperature at 23 degrees C and relative humidity at 55%. The leaf area indices (LAIs) of the plant canopies were 0.6-2.5 and plant heights were 0.05-0.2 m. The net photosynthetic rate of the plant canopy increased with increasing air velocities inside plant canopies and saturated at 0.2 m s-1. The net photosynthetic rate at the air velocity of 0.4 m s-1 was 1.3 times that at 0.1 m s-1 under CO2 concentrations of 0.4 and 0.8 mmol mol-1. The net photosynthetic rate under CO2 concentrations of 0.8 mmol mol-1 was 1.2 times that under 0.4 mmol mol-1 at the air velocity ranging from 0.1 to 0.8 m s-1. The results confirmed the importance of controlling air movement for enhancing the canopy photosynthesis under an elevated CO2 level as well as under a normal CO2 level in the closed plant production modules.  相似文献   

12.
The behavior of an aqueous-dominant multicomponent cometary model is examined at high doses of ionizing radiation. The system is composed of a water mixture of HCN (0.2 mol dm-3), CH3CN (0.04 mol dm-3), C2H5CN (0.02 mol dm-3), CH3OH (0.12 mol dm-3) and HCO2H (0.01 mol dm-3. It was exposed to gamma rays at doses up to 18.5 MGy. The chemical kinetic database used in the computer treatment of experimental data consists of 79 reactions. A complex mixture of products has been synthesized: gases, amino acids, carboxylic acids and polymeric material. The results suggest that the pristine material in cometary nuclei may have been chemically altered by the action of cosmic rays and embedded radionuclides.  相似文献   

13.
It has been suggested that it is not simple double-strand breaks (dsb) but the non-reparable breaks which correlate well with the high biological effectiveness of high LET radiations for cell killing (Kelland et al., 1988; Radford, 1986). We have compared the effects of charged particles on cell death in 3 pairs of cell lines which are normal or defective in the repair of DNA dsbs. For the cell lines SL3-147, M10, and SX10 which are deficient in DNA dsb repair, RBE values were close to unity for cell killing induced by charged particles with linear energy transfer (LET) up to 200 keV/micrometer and were even smaller than unity for the LET region greater than 300 keV/micrometer. The inactivation cross section (ICS) increased with LET for all 3 pairs. The ICS of dsb repair deficient mutants was always larger than that of their parents for all the LET ranges, but with increasing LET the difference in ICS between the mutant and its parent became smaller. Since a small difference in ICS remained at LET of about 300 keV/micrometer, dsb repair may still take place at this high LET, even if its role is apparently small. These results suggest that the DNA repair system does not play a major role in protection against the attack of high LET radiations and that a main muse of cell death is non-reparable dsb which are produced at a higher yield compared with low LET radiations. No correlation was observed between DNA content or nuclear area and ICS.  相似文献   

14.
We have observed HNC and HCN in the coma of comet C/2002 C1 (Ikeya-Zhang). We derive HNC/HCN ratios of 23 per cent and 3 percent at heliocentric distances of 0.73 and 0.96 AU respectively. These amounts of HNC cannot be synthesised in the coma via bimolecular chemical reactions, and so these observations appear to confirm that the dominant source of HNC in cometary comae is the degradation of complex organic material.  相似文献   

15.
The ion formation processes by dust impacts have been studied qualitatively as well as quantitatively by dust accelerator laboratory measurements. Iron, carbon and metallized glass particles in the femto- to nano-gram mass range had been impacted on various metal targets in a velocity regime of v = 2 - 64 km/s. In the high velocity regime as relevant for the (retrograde) Halley encounter more than 99% of the ions produced are singly charged atomic, the rest molecular ones. The ion/atom ratios are apparently modified SIMS yields, the modification parameter being impact velocity dependent. A semiempirical formula was deduced for the determination of mass and density of the impacting particle from target and projectile ion yields. When evaluating the Halley encounter results, the elemental distribution of p/Halley dust appeared nearly to be solar; the organic fraction (CHON) could be characterized in a rough manner as fairly unsaturated. Oligomers of the monomers C2H2 (65%), CH2O (25%), and HCN (10%) are probable.

With medium velocities (for prograde comet encounter), i.e. v = 15-30 km/s molecular ion types govern the mass spectra. Consequently, more chemical information of the projectile can be expected in this case, additional to the elemental distribution. Mass and density of the impinging dust particles can be determined as well.  相似文献   


16.
Relative abundances of sub-iron (Sc-Cr) to iron nuclei in low energy (50–100 MeV/N) galactic cosmic rays have been determined from an analysis of about 100 events of heavy ions (Z = 10−28) recorded in a detector assembly flown in the Anuradha cosmic ray experiment in the Spacelab-3 on a six day mission in April–May 1985. The measured abundance ratio of (Sc-Cr)/Fe nuclei in 50–100 MeV/N energy range is 1.1 ± 0.3, and the present result of enhanced ratio of sub-iron to iron nuclei is in agreement with other experimental results in 200–800 MeV/N range. The over-abundance of iron secondaries at these low energies cannot be explained in the conventional models for propagation of cosmic rays. Available experimental data indicate a very different time history for the low energy iron-group, as compared to those of lighter nuclei in galactic cosmic rays.  相似文献   

17.
It can be noted that it is not simple double strand breaks (dsb) but the non-reparable breaks that are associated with high biological effectiveness in the cell killing effect for high LET radiation. Here, we have examined the effectiveness of fast neutrons and low (initial energy = 12 MeV/u) or high (135 MeV/u) energy charged particles on cell death in 19 mammalian cell lines including radiosensitive mutants. Some of the radiosensitive lines were deficient in DNA dsb repair such as LX830, M10, V3, and L5178Y-S cells and showed lower values of relative biological effectiveness (RBE) for fast neutrons if compared with their parent cell lines. The other lines of human ataxia-telangiectasia fibroblasts, irs 1, irs 2, irs 3 and irs1SF cells, which were also radiosensitive but known as proficient in dsb repair, showed moderated RBEs. Dsb repair deficient mutants showed low RBE values for heavy ions. These experimental findings suggest that the DNA repair system does not play a major role against the attack of high linear energy transfer (LET) radiations. Therefore, we hypothesize that a main cause of cell death induced by high LET radiations is due to non-reparable dsb, which are produced at a higher rate compared to low LET radiations.  相似文献   

18.
Plant growth, development and embryogenesis during Salyut-7 flight.   总被引:1,自引:0,他引:1  
The growth and geotropic movements of roots and hypocotyls of lettuce have been studied on board the Salyut 7 station in a stationary position and on the centrifuge at 0.01, 0.1 and 1 g. On the centrifuge at 0.1 and 0.01 g as well as under weightlessness, the final length of hypocotyls was by 8-16% greater than in control plants on the centrifuge at 1 g. The length of roots, however, was reduced by 17% at 0.01 g and under weightlessness; at 0.1 g their growth is much the same as at 1 g. On the Earth, while growing in a vertical position, and in space at 0 < or = g, the roots and hypocotyls deviate from the longitudinal axis of the seed. Average values of deviation eagles on the Earth are always equal to zero, while this is not always the case in space, which indicates the biological effect of microgravity conditions on board a spacecraft. The threshold of geotropic sensitiveness of lettuce hypocotyls, calculated from the linear regression parameters of the dependence of the response geotropic reaction upon the value of the centrifugal force, comprised 2.9 x 10(-3) g. In the Fiton 3 micro-greenhouse under spaceflight conditions, the plants of Arabidopsis thaliana (L) Heynh have, for the first time, undergone a full cycle of individual development. The seeds sown during the flight germinated, performed growth processes, formed vegetative and generative organs and, judging by the final result, they succeeded in fecundation, embryogenesis and ripening. Despite the noted modification of growth and development of plants in space, 42% of formed seeds appeared to be valuable biologically.  相似文献   

19.
We analyze the three outbursts of the X-ray millisecond pulsar SAX J1808.4-3658 that occurred in 1998, 2000, and 2002 observed with RXTE. With a technique based on epoch folding search we find an unique orbital solution valid over the five years of high temporal resolution data available. We revise the estimate of the orbital period, Porb = 7249.1569(1) s and of its error, which we decrease by one order of magnitude. We also give the first constraint on the orbital period derivative, . We find that in 2002 the pulse profile shape is clearly asymmetric, showing a secondary peak at about 145° from the main pulse, which is different from the sinusoidal shape reported at the beginning of the 1998 outburst.  相似文献   

20.
The dwarf M stars YZ Canis Minoris and AD Leonis exhibit narrow-band, slowly varying (hours) microwave emission that cannot be explained by conventional thermal radiation mechanisms. The dwarf M stars AD Leonis and Wolf 424 emit rapid spikes whose high brightness temperatures similarly require a nonthermal radiation process. We attribute them to coherent mechanisms such as an electron-cyclotron maser or coherent plasma radiation. If the electron-cyclotron maser emits at the second or third harmonic of the gyrofrequency, the coronal magnetic field strength H = 250 G or 167 G and constraints on the plasma frequency imply an electron density of Ne = 6 × 109cm−3. Coherent plasma radiation requires similar values of electron density but much weaker magnetic fields. Radio spikes from AD Leonis and Wolf 424 have rise times τR ⩽ 5 ms, indicating a linear size of L ⩽ 1.5 × 108cm, or less than 0.005 of the stellar radius. Although Ap magnetic stars have strong dipole magnetic fields, they exhibit no detectable gyroresonant radiation, suggesting that these stars do not have hot, dense coronae. The binary RS CVn star UX Arietis exhibits variable emission at 6 cm wavelength on time scales ranging from 30 s to more than one hour. The shortest variation implies a linear size much less than that of the halo observed by VLBI techniques, and most probably sizes smaller than those of the component stars. The observed variations might be due to absorption by a thermal plasma located between the stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号