共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Tilman Spohn Mario H. Acuña Doris Breuer Matthew Golombek Ronald Greeley Alexander Halliday Ernst Hauber Ralf Jaumann Frank Sohl 《Space Science Reviews》2001,96(1-4):231-262
The evolution of Mars is discussed using results from the recent Mars Global Surveyor (MGS) and Mars Pathfinder missions together with results from mantle convection and thermal history models and the chemistry of Martian meteorites. The new MGS topography and gravity data and the data on the rotation of Mars from Mars Pathfinder constrain models of the present interior structure and allow estimates of present crust thickness and thickness variations. The data also allow estimates of lithosphere thickness variation and heat flow assuming that the base of the lithosphere is an isotherm. Although the interpretation is not unambiguous, it can be concluded that Mars has a substantial crust. It may be about 50 km thick on average with thickness variations of another ±50 km. Alternatively, the crust may be substantially thicker with smaller thickness variations. The former estimate of crust thickness can be shown to be in agreement with estimates of volcanic production rates from geologic mapping using data from the camera on MGS and previous missions. According to these estimates most of the crust was produced in the Noachian, roughly the first Gyr of evolution. A substantial part of the lava generated during this time apparently poured onto the surface to produce the Tharsis bulge, the largest tectonic unit in the solar system and the major volcanic center of Mars. Models of crust growth that couple crust growth to mantle convection and thermal evolution are consistent with an early 1 Gyr long phase of vigorous volcanic activity. The simplest explanation for the remnant magnetization of crustal units of mostly the southern hemisphere calls for an active dynamo in the Noachian, again consistent with thermal history calculations that predict the core to become stably stratified after some hundred Myr of convective cooling and dynamo action. The isotope record of the Martian meteorites suggest that the core formed early and rapidly within a few tens of Myr. These data also suggest that the silicate rock component of the planet was partially molten during that time. The isotope data suggest that heterogeneity resulted from core formation and early differentiation and persisted to the recent past. This is often taken as evidence against vigorous mantle convection and early plate tectonics on Mars although the latter assumption can most easily explain the early magnetic field. The physics of mantle convection suggests that there may be a few hundred km thick stagnant, near surface layer in the mantle that would have formed rapidly and may have provided the reservoirs required to explain the isotope data. The relation between the planform of mantle convection and the tectonic features on the surface is difficult to entangle. Models call for long wavelength forms of flow and possibly a few strong plumes in the very early evolution. These plumes may have dissolved with time as the core cooled and may have died off by the end of the Noachian. 相似文献
4.
5.
6.
Paul R. Mahaffy Mehdi Benna Todd King Daniel N. Harpold Robert Arvey Michael Barciniak Mirl Bendt Daniel Carrigan Therese Errigo Vincent Holmes Christopher S. Johnson James Kellogg Patrick Kimvilakani Matthew Lefavor Jerome Hengemihle Ferzan Jaeger Eric Lyness John Maurer Anthony Melak Felix Noreiga Marvin Noriega Kiran Patel Benito Prats Eric Raaen Florence Tan Edwin Weidner Cynthia Gundersen Steven Battel Bruce P. Block Ken Arnett Ryan Miller Curt Cooper Charles Edmonson J. Thomas Nolan 《Space Science Reviews》2015,196(1-4):49-77
7.
Cratering Records in the Inner Solar System in Relation to the Lunar Reference System 总被引:5,自引:0,他引:5
The well investigated size-frequency distributions (SFD) for lunar craters is used to estimate the SFD for projectiles which formed craters on terrestrial planets and on asteroids. The result shows the relative stability of these distributions during the past 4 Gyr. The derived projectile size-frequency distribution is found to be very close to the size-frequency distribution of Main-Belt asteroids as compared with the recent Spacewatch asteroid data and astronomical observations (Palomar-Leiden survey, IRAS data) as well as data from close-up imagery by space missions. It means that asteroids (or, more generally, collisionally evolved bodies) are the main component of the impactor family. Lunar crater chronology models of the authors published elsewhere are reviewed and refined by making use of refinements in the interpretation of radiometric ages and the improved lunar SFD. In this way, a unified cratering chronology model is established which can be used as a safe basis for modeling the impact chronology of other terrestrial planets, especially Mars. 相似文献
8.
人类在40多年火星探测中,经历了无数次失败.但为了进一步探测这颗红色星球的奥秘,美国于今年6、7月又分别发射了"勇气"号和"机遇"号探测器,这两个探测器上安装了许多用于科研的测试仪器和设备,并采用了许多关键技术 相似文献
9.
10.
11.
8月4日,美国"凤凰"号火星着陆探测器从卡纳维拉尔角肯尼迪航天中心发射升空,开始了它历时近10个月的飞向火星的旅程。在火星北极地区着陆后,"凤凰"号将通过挖掘并分析火星极区土壤样本以确定当地环境是否适合生物生存。 相似文献
12.
13.
James E. Richardson H. Jay Melosh Natasha A. Artemeiva Elisabetta Pierazzo 《Space Science Reviews》2005,117(1-2):241-267
The cratering event produced by the Deep Impact mission is a unique experimental opportunity, beyond the capability of Earth-based
laboratories with regard to the impacting energy, target material, space environment, and extremely low-gravity field. Consequently,
impact cratering theory and modeling play an important role in this mission, from initial inception to final data analysis.
Experimentally derived impact cratering scaling laws provide us with our best estimates for the crater diameter, depth, and
formation time: critical in the mission planning stage for producing the flight plan and instrument specifications. Cratering
theory has strongly influenced the impactor design, producing a probe that should produce the largest possible crater on the
surface of Tempel 1 under a wide range of scenarios. Numerical hydrocode modeling allows us to estimate the volume and thermodynamic
characteristics of the material vaporized in the early stages of the impact. Hydrocode modeling will also aid us in understanding
the observed crater excavation process, especially in the area of impacts into porous materials. Finally, experimentally derived
ejecta scaling laws and modeling provide us with a means to predict and analyze the observed behavior of the material launched
from the comet during crater excavation, and may provide us with a unique means of estimating the magnitude of the comet’s
gravity field and by extension the mass and density of comet Tempel 1. 相似文献
14.
15.
16.
Peter Mazur Elso S. Barghoorn Harlyn O. Halvorson Thomas H. Jukes Isaac R. Kaplan Lynn Margulis 《Space Science Reviews》1978,22(1):3-34
A central purpose of Viking was to search for evidence that life exists on Mars or may have existed in the past. The missions carried three biology experiments the prime purpose of which was to seek for existing microbial life. In addition the results of a number of the other experiments have biological implications: (1) The elemental analyses of the atmosphere and the regolith showed or implied that the elements generally considered essential to terrestrial biology are present. (2) But unexpectedly, no organic compounds were detected in Martian samples by an instrument that easily detected organic materials in the most barren of terrestrial soils. (3) Liquid water is believed to be an absolute requisite for life. Viking obtained direct evidence for the presence of water vapor and water ice, and it obtained strong inferential evidence for the existence of large amounts of subsurface permafrost now and in the Martain past. However it obtained no evidence for the current existence of liquid water possessing the high chemical potential required for at least terrestrial life, a result that is consistent with the known pressure-temperature relations on the planet's surface. On the other hand, the mission did obtain strong indications from both atmospheric analyses and orbital photographs that large quantities of liquid water flowed episodically on the Martian surface 0.5 to 2.5 G years ago.The three biology experiments produced clear evidence of chemical reactivity in soil samples, but it is becoming increasingly clear that the chemical reactions were nonbiological in origin. The unexpected release of oxygen by soil moistened with water vapor in the Gas Exchange experiment together with the negative findings of the organic analysis experiment lead to the conclusion that the surface contains powerful oxidants. This conclusion is consistent with models of the atmosphere. The oxidants appear also to have been responsible for the decarboxylation of the organic nutrients that were introduced in the Label Release experiment. The major results of the GEX and LR experiments have been simulated at least qualitatively on Earth. The third, Pyrolytic Release, experiment obtained evidence for organic synthesis by soil samples. Although the mechanism of the synthesis is obscure, the thermal stability of the reaction makes a biological explanation most unlikely. Furthermore, the response of soil samples in all three experiments to the addition of water is not consistent with a biological interpretation.The conditions now known to exist at and below the Martian surface are such that no known terrestrial organism could grow and function. Although the evidence does not absolutely rule out the existence of favourable oases, it renders their existence extremely unlikely. The limiting conditions for the functioning of terrestrial organisms are not the limits for conceivable life elsewhere, and accordingly one cannot exclude the possibility that indigenous life forms may currently exist somewhere on Mars or may have existed sometime in the past. Nevertheless, the available information about the present Martian environment puts severe constraints and presents formidable challenges to any putative Martian organisms. The Martian environment in the past, on the other hand, appears to have been considerably less hostile biologically, and it might possibly have permitted the origin and transient establishment of a biota. 相似文献
17.
Esa Kallio Jean-Yves Chaufray Ronan Modolo Darci Snowden Robert Winglee 《Space Science Reviews》2011,162(1-4):267-307
Increased computer capacity has made it possible to model the global plasma and neutral dynamics near Venus, Mars and Saturn??s moon Titan. The plasma interactions at Venus, Mars, and Titan are similar because each possess a substantial atmosphere but lacks a global internally generated magnetic field. In this article three self-consistent plasma models are described: the magnetohydrodynamic (MHD) model, the hybrid model and the fully kinetic plasma model. Chamberlain and Monte Carlo models of the Martian exosphere are also described. In particular, we describe the pros and cons of each model approach. Results from simulations are presented to demonstrate the ability of the models to capture the known plasma and neutral dynamics near the three objects. 相似文献
18.
Chemistry,accretion, and evolution of Mars 总被引:1,自引:0,他引:1
Heinrich Wänke 《Space Science Reviews》1991,56(1-2):1-8
The high FeO concentrations measured by VIKING for the Martian soils correspond to all probability to a FeO-rich mantle. In general, the VIKING XRF-data indicate a mafic crust with a considerably smaller degree of fractionation compared to the terrestrial crust.In recent years evidence has been collected which points towards Mars being the parent body of SNC-meteorites and, hence, these meteorites have become a valuable source of information about the chemistry of Mars. Using element correlations observed in SNC-meteorites and general cosmochemical constraints, it is possible to estimated the bulk composition of Mars. Normalized to Si and Cl, the mean abundance value for the elements Ga, Fe, Na, P, K, F, and Rb in the Martian mantle is found to be 0.35 and thus exceeds the terrestrial value by about a factor of two. Aside pressure effects and the H2O poverty, the high P and K content of the Martian mantle may lead to magmatic processes different from those on Earth.The composition of the Earth's mantle can successfully be described by a two component model. Component A: highly reduced and almost free of all elements more volatile than Na; component B: oxidized and containing all elements in Cl-abundances including volatile elements. The same two components can be used as building blocks for Mars, if one assumes that, contrary to the inhomogeneous accretion of the Earth, Mars accreted almost homogeneously. The striking depletion of all elements with chalcophile character indicates that chemical equilibrium between component A and B was achieved on Mars which lead to the formation of significant amounts of FeS which, on segregation, extracted the elements according to their sulphide-silicate partition coefficients. While for the Earth a mixing ratio AB = 8515 was derived, the Mars ratio of 6040 reflects the higher concentrations of moderately volatile elements like Na, K, and sulphur on Mars. A homogeneous accretion of Mars could also explain the obvious low abundances of water and primordial rare gases. 相似文献
19.
Mars Science Laboratory Mission and Science Investigation 总被引:5,自引:0,他引:5
John P. Grotzinger Joy Crisp Ashwin R. Vasavada Robert C. Anderson Charles J. Baker Robert Barry David F. Blake Pamela Conrad Kenneth S. Edgett Bobak Ferdowski Ralf Gellert John B. Gilbert Matt Golombek Javier Gómez-Elvira Donald M. Hassler Louise Jandura Maxim Litvak Paul Mahaffy Justin Maki Michael Meyer Michael C. Malin Igor Mitrofanov John J. Simmonds David Vaniman Richard V. Welch Roger C. Wiens 《Space Science Reviews》2012,170(1-4):5-56
Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (~23?months), and drive capability of at least 20?km. Curiosity’s science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a?laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity’s field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5?km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a mountain to achieve its primary science goals. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes drill bit boxes, the organic check material, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck. 相似文献
20.
The exploration of our nearest planets will require relaying large amounts of data to Earth for study and evaluation. However, our ability to communicate at interplanetary distances is limited. In this paper, an evaluation is made of our capability to communicate from the vicinity of Mars using the present S-band deep-space network, prospects for enhancing that performance, and limitations beyond which no additional improvement seems feasible. In addition, requirements for real-time television are evaluated and prospects for improving the communication rates by operating at higher microwave frequencies considered. 相似文献