首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 78 毫秒
1.
RP-3航空煤油层流燃烧特性的实验   总被引:5,自引:6,他引:5  
为了阐明RP-3航空煤油的燃烧特性,在定容燃烧反应器中实验测量了初始压力分别为0.1,0.3,0.5,0.7MPa、初始温度分别为390,420,450K、当量比范围为0.6~1.6时,RP-3航空煤油的层流燃烧速度与马克斯坦长度,分析了初始温度、压力以及当量比对火焰发展结构、层流燃烧速度及马克斯坦长度的影响.结果表明:随着初始温度的升高或初始压力的降低,RP-3航空煤油的层流燃烧速度逐渐升高;随着当量比由0.6升高至1.6,层流燃烧速度呈现先增加后降低的趋势,当当量比为1.2时,层流燃烧速度最大.随着初始压力或当量比的降低,马克斯坦长度逐渐增大,火焰稳定性增强;初始温度对马克斯坦长度的影响不明显,当当量比为0.9~1.1时,随着初始温度的升高,马克斯坦长度逐渐减小,但当当量比为1.2~1.5时,马克斯坦长度则有所增大.   相似文献   

2.
小球藻油/RP-3航空煤油混合燃料的层流燃烧特性   总被引:1,自引:1,他引:0  
在初始压力0.1 MPa、初始温度450 K和当量比范围0.8~1.2工况下,进行小球藻油及其与RP-3航空煤油混合燃料的层流燃烧特性研究。研究结果表明:随着当量比增加,小球藻油着火滞燃期缩短,拉伸火焰传播速度增加。与RP-3航空煤油相比,小球藻油无拉伸火焰传播速度峰值更偏向于浓混合气区域,且对当量比较为敏感,随着当量比增加,其无拉伸火焰传播速度变化显著。随着小球藻油含量增加,混合燃料无拉伸火焰传播速度峰值右移,50%小球藻油/50%RP-3航空煤油混合燃料无拉伸火焰传播速度峰值出现在当量比Φ=1.4附近。研究发现,与小球藻油和RP-3航空煤油单组分燃料相比,50%小球藻油/50%RP-3航空煤油混合燃料马克斯坦长度值变大,混合燃料具有较好的燃烧稳定性。   相似文献   

3.
氢气添加对RP-3航空煤油燃烧特性的影响   总被引:2,自引:0,他引:2  
为了阐明氢气添加对国产RP-3航空煤油燃烧特性的影响,在定容燃烧反应器中实验测量了初始压力为0.1MPa、初始温度分别为390,420K、当量比范围为0.8~1.5时RP-3航空煤油/氢气混合气的层流燃烧速度与马克斯坦长度,分析了掺氢比对火焰发展结构、层流燃烧速度及马克斯坦长度的影响.结果表明:随着掺氢比的提高,在火焰发展过程中,火焰前锋面逐渐出现裂纹或褶皱,火焰的不稳定性逐渐增强;随着混合气当量比或掺氢比的升高,RP-3航空煤油/氢气混合气的马克斯坦长度逐渐减小;当混合气当量比从0.8升高至1.5时,RP-3航空煤油/氢气混合气的层流燃烧速度呈现先增加后降低的趋势,当量比为1.2时混合气的层流燃烧速度达到最大;同时,随着初始温度或掺氢比的升高,RP-3航空煤油/氢气混合气的层流燃烧速度逐渐升高。   相似文献   

4.
刘靖  胡二江  黄佐华  曾文 《航空动力学报》2019,34(12):2677-2685
在定容弹中实验测试了初始压力分别为0.1、0.3 MPa、初始温度分别为390、400、420 K、当量比范围为0.8~1.5时RP-3航空煤油模拟替代燃料的层流燃烧特性,并对比分析了模拟替代燃料与RP-3航空煤油的层流燃烧速率。结果表明,模拟替代燃料层流燃烧火焰的马克斯坦长度随初始压力或当量比的降低逐渐增大,表明火焰稳定性逐步增强;初始温度对火焰稳定性的影响不明显;随初始温度的升高或初始压力的降低,模拟替代燃料的层流燃烧速率逐渐升高;随着当量比的逐渐增大,模拟替代燃料的层流燃烧速率先增大后降低,在当量比为1.2时达到最大;在相同工况下,模拟替代燃料与RP-3航空煤油的层流燃烧速率吻合较好。   相似文献   

5.
初始温度对CH4/RP-3航空煤油混合燃料层流燃烧特性的影响   总被引:1,自引:2,他引:1  
采用定容燃烧实验装置对初始压力为0.1MPa、当量比为0.7~1.5、甲烷体积分数为0、0.4和0.8,以及3种初始温度工况下,CH4/RP-3航空煤油混合燃料层流燃烧特性进行实验研究。获得混合燃料火焰发展图片、层流燃烧速度和马克斯坦长度等,并分析初始温度对CH4/RP-3航空煤油混合燃料层流燃烧速度及燃烧稳定性的影响。结果表明,当火焰拉伸率趋于0时,非线性拟合方法NLM2(nonlinear fitting method 2)能够准确预测拉伸火焰传播速度随火焰拉伸率变化规律,外推可获得较为准确的无拉伸火焰传播速率。初始温度对稀混合燃料火焰传播速度的影响较大,而对化学当量比和浓混合燃料火焰传播速度的影响较小。3种甲烷体积分数混合燃料的层流燃烧速度均随初始温度增加而增加。当初始温度为420K时,马克斯坦长度随当量比减小最快,而当初始温度为480K时,马克斯坦长度减小最慢。在稀混合气和化学当量比工况,随着初始温度增加,混合燃料马克斯坦长度减小,混合燃料燃烧稳定性变差,而在浓混合气工况,各初始温度马克斯坦长度趋于一致,此时,初始温度增加对燃烧稳定性影响较小。   相似文献   

6.
刘宇  孙震  罗睿  马洪安  赵欢  曾文 《航空动力学报》2018,33(6):1305-1314
采用定容燃烧实验装置获得初始温度为450K、初始压力为0.1~0.3MPa、当量比为0.7~1.5以及甲烷摩尔分数为0~0.8工况下甲烷/RP-3航空煤油混合燃料火焰发展特性图片、马克斯坦长度和层流燃烧速度等燃烧特性,分析甲烷摩尔分数及初始压力对甲烷/RP-3航空煤油混合燃料燃烧稳定性及层流燃烧速度的影响。结果表明:当量比为1.3时,随着甲烷摩尔分数增加,甲烷/RP-3航空煤油混合燃料燃烧趋于稳定,初始压力对燃烧稳定性影响较大,随着初始压力增加,燃烧稳定性变差。混合燃料马克斯坦长度随当量比增加而减小,当甲烷摩尔分数增加时,混合燃料马克斯坦长度减小趋势变缓,当初始压力增加时,混合燃料马克斯坦长度减小趋势明显变缓。混合燃料层流燃烧速度随当量比增加呈现先增大后减小的变化趋势。当甲烷摩尔分数为0、0.4和0.6时,随着甲烷摩尔分数增加,混合燃料层流燃烧速度逐渐增大,当初始压力为0.1、0.2、0.3MPa时,随着初始压力增加,混合燃料层流燃烧速度显著降低,随着甲烷摩尔分数和初始压力的增加,混合燃料层流燃烧速度峰值有向当量比大的区移动的趋势。   相似文献   

7.
RP-3航空煤油3组分模拟替代燃料燃烧反应机理   总被引:1,自引:3,他引:1  
提出了一种包括65%正癸烷、10%甲苯与25%丙基环己烷3组分的RP-3航空煤油模拟替代燃料的燃烧反应机理,该机理由150种组分和591个基元反应组成.采用该燃烧反应机理对RP-3航空煤油模拟替代燃料在激波管和定容燃烧弹中的着火与燃烧特性进行数值模拟,并与相应工况实验数据进行对比分析.通过与RP-3航空煤油单组分正癸烷模拟替代燃料的燃烧反应机理进行对比分析发现:正癸烷、甲苯与丙基环己烷3组分替代燃料的燃烧反应机理对着火延迟时间的计算偏差能够控制在5%以内,对层流燃烧速度的计算偏差能够控制在10%以内,计算值明显优于正癸烷单组分替代燃料;进一步采用敏感性分析方法对3组分模拟替代燃料的燃料反应机理进行了适当修正,修正后机理对层流燃烧速度的计算偏差由10%提高到5%以内,能够更好预测所研究参数下的RP-3航空煤油的着火延迟时间和层流燃烧速度.   相似文献   

8.
RP-3航空煤油燃烧特性及其反应机理构建综述   总被引:1,自引:0,他引:1  
目前耦合航空煤油多步燃烧反应机理的数值模拟计算已引起学者们的重视,燃烧反应机理的构建已成为研究热点。详细介绍了国内外关于航空煤油模拟替代燃料的选取、化学反应动力学模型构建和简化、着火延迟时间和层流燃烧速度等的实验规律。依据国外研究进展,指出了中国在国产RP-3航空煤油燃烧反应机理研究方面应从基础研究做起,全方位、多维、立体地合作开展相关研究,主要包括:国产RP-3航空煤油化学动力学模型的建立、低温高压工况条件下航空煤油与模拟替代燃料的基础实验研究与模型燃烧室研究,以期丰富相关研究成果,推进航空发动机的高质量发展。  相似文献   

9.
付意  罗睿  史鹏宇  夏文博  范玮 《推进技术》2021,42(10):2377-2384
为了研究一种RP-3航空煤油的五组分模拟替代燃料(包含摩尔分数为14%正癸烷、10%正十二烷、30%异十六烷、36%甲基环己烷和10%甲苯)的燃烧特性,在定容燃烧装置中对初始温度390K、400K和420K,初始压力0.1MPa和0.3MPa,当量比0.8-1.5的该五组分混合燃料进行了层流燃烧特性的试验。通过对火焰照片进行边界提取和测量,获得了火焰面发展规律、马克斯坦长度和层流燃烧速率,并将试验结果与RP-3航空煤油的层流燃烧速度进行了对比,得出结论:温度升高会促进球形火焰面的传播;压力升高或混合气过浓和过稀都不利于五组分混合燃料的火焰传播。在本文的试验工况下,温度对火焰前锋面不稳定性的影响不明显;随着当量比增加,马克斯坦长度减小,质量扩散的作用逐渐增强而使火焰面变得不稳定;压力升高使火焰前锋面的不稳定程度明显加剧,表现为初始压力较高时火焰面破碎情况严重并出现大量细胞状结构。五组分混合燃料层流燃烧速度的峰值出现在当量比1.2左右,偏离该当量比时,火焰传播速度随着偏离量逐渐减小。通过与RP-3航空煤油的试验数据进行对比,发现在试验工况下,该五组分混合燃料与RP-3航空煤油的层流燃烧速度基本吻合。  相似文献   

10.
为了获得沼气的燃烧稳定性与层流燃烧特性,在定容燃烧弹中试验测量了当量比范围为0.7~1.4、初始压力范围为0.1~0.5MPa、初始温度范围为290~380K条件下沼气的层流火焰传播特性。同时,对其燃烧稳定性与层流燃烧速度的主要影响因素进行了分析。结果表明:当层流燃烧速度小于0.15m/s时,火焰在发展过程中将出现浮力不稳定,火核中心逐渐向上飘起。马克斯坦长度随初始压力的升高或当量比的降低逐渐变小,火焰前锋面不稳定性得到增强;初始温度对马克斯坦长度的影响不明显。随当量比的升高,无拉伸火焰传播速度与层流燃烧速度先升高后降低,两者的最大值出现在当量比为1.1时;同时,沼气的层流燃烧速度随初始温度的降低或初始压力的升高逐渐降低。   相似文献   

11.
Experimental study on combustion characteristics of Chinese RP-3 kerosene   总被引:1,自引:0,他引:1  
《中国航空学报》2016,(2):375-385
In order to illustrate the combustion characteristics of RP-3 kerosene which is widely used in Chinese aero-engines, the combustion characteristics of RP-3 kerosene were experimentally investigated in a constant volume combustion chamber. The experiments were performed at four different pressures of 0.1 MPa, 0.3 MPa, 0.5 MPa and 0.7 MPa, and three different temperatures of 390 K,420 K and 450 K, and over the equivalence ratio range of 0.6–1.6. Furthermore, the laminar combustion speeds of a surrogate fuel for RP-3 kerosene were simulated under certain conditions. The results show that increasing the initial temperature or decreasing the initial pressure causes an increase in the laminar combustion speed of RP-3 kerosene. With the equivalence ratio increasing from 0.6 to 1.6, the laminar combustion speed increases initially and then decreases gradually.The highest laminar combustion speed is measured under fuel rich condition(the equivalence ratio is 1.2). At the same time, the Markstein length shows the same changing trend as the laminar combustion speed with modification of the initial pressure. Increasing the initial pressure will increase the instability of the flame front, which is established by decreased Markstein length. However, different from the effects of the initial temperature and equivalence ratio on the laminar combustion speed,increasing the equivalence ratio will lead to a decrease in the Markstein length and the stability of the flame front, and the effect of the initial temperature on the Markstein length is unclear. Furthermore, the simulated laminar combustion speeds of the surrogate fuel agree with the corresponding experimental datas of RP-3 kerosene within 10% deviation under certain conditions.  相似文献   

12.
为了获得RP-3航空煤油与其模型燃料的雾化特性,在燃油喷嘴雾化激光测试平台上对相对喷射压力分别为200、400、600、800 kPa时,RP-3航空煤油及由14%正癸烷/10%正十二烷/30%异十六烷/36%甲基环己烷/10%甲苯(摩尔分数)组成的模型燃料的雾化特性(雾化锥角、雾化粒度、油滴速度)进行了试验测试,并完成了两者的对比分析。结果表明:随着相对喷射压力的升高,RP-3航空煤油与其模型燃料的雾化锥角与油滴速度逐渐增大,索太尔平均直径(SMD)逐渐减小;随着离喷嘴出口轴向距离的增加,RP-3航空煤油与其模型燃料的SMD值与油滴速度逐渐减小;在各相对喷射压力下,模型燃料的雾化锥角与油滴速度要略高于RP-3航空煤油,SMD值则要略低;但是,两者之间差异较小,说明该模型燃料的雾化特性与RP-3航空煤油有较高的相似性。   相似文献   

13.
RP-3航空煤油着火特性的实验   总被引:4,自引:2,他引:4  
在化学激波管中利用反射激波着火,采用壁面压力与OH自发光作为着火指示信号,测量了着火温度范围为1100~1600K,压力为0.1,0.2,0.3MPa,当量比为0.5,1.0,1.5时RP-3航空煤油/氧气/氩气混合气的着火延迟时间,分析了着火温度、压力以及当量比对混合气着火延迟时间的影响,并拟合得到了不同压力与当量比下混合气着火延迟时间的Arrhenius关系式.结果表明:在不同压力与当量比下,混合气的着火延迟时间的对数与着火温度的倒数呈线性关系,同时,随着着火温度与压力的升高以及混合气当量比的降低,着火延迟时间逐渐缩短.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号