共查询到12条相似文献,搜索用时 46 毫秒
1.
设计了一种抗慢时变干扰的简单饱和姿态控制器。其基本原理是将干扰作为未知参数,然后利用浸入与不变流形的方法设计了独立于控制器的干扰估计器,从而再基于干扰的估计结果设计饱和控制器。该控制器形式简单,由比例与微分项和干扰补偿项组成,各部分物理意义明确。根据浸入与不变流形方法,通过严格的理论证明得到了如下结果:对于慢时变干扰的情况,通过调整控制干扰辨识收敛速度的参数,可以使得理论上的姿态最终控制误差任意小(实际仿真误差还受限于由数值稳定性决定的时间步长);对于干扰为常值的情况,则可以完全消除干扰的影响,并获得系统状态渐近稳定的结果。最后通过数值仿真验证了控制方案的可行性。 相似文献
2.
针对存在未知气动参数的吸气式高超声速飞行器纵向运动控制问题,提出一种基于不变流形的自适应动态面控制方法.通过合理假设将高超声速飞行器纵向模型分解为弹道倾角回路和速度回路,分别实现对弹道倾角和速度参考指令的跟踪.弹道倾角回路被表达为严反馈形式进行控制器设计.采用基于不变流形的自适应方法实现了对未知参数的估计.所提出的自适应动态面控制方案能保证未知参数估计误差全局一致稳定和闭环系统全局有界稳定,且估计器和控制器设计不存在耦合,因此参数设计更加容易.仿真结果验证了该控制方法在参数估计方面的显著优势和良好的闭环系统性能. 相似文献
3.
目前航空电子系统正快速朝着综合模块化方向发展。为了防止同一计算平台上的应用相互干扰,IMA软件普遍采用分区机制。由于时间分区的引入,传统的实时周期任务可调度性分析已经不再适用。为此研究了一类特殊的分区系统——和谐周期分区系统在单处理器下的可调度性。给出了和谐周期分区系统的形式化定义以及系统中任务可调度性的充分必要条件,并基于此提出了一种分区时间窗口分配算法。该算法为每个分区在主时间帧内分配多个时间窗口,并且保证只要和谐周期分区系统在理论上可调度,该算法就一定能生成一个可行的调度表,使得当全局调度器按照此调度表周期地调度分区时,各个分区中的任务不会超时。本文提出的算法可以运用在实际的工程中。 相似文献
4.
针对现有异常检测算法用于伪周期时间序列异常序列检测时易造成误差累积,导致序列周期与特征值上显著差异的不足,文章以卫星遥测伪周期时序数据为对象,综合两种常规分段方法的优势,提出了最大周期窗宽内基于极值的模式子序列分段算法。在此基础上,给出了一种基于均序列动态生成模型的子序列异常检测方法(AnomalySubsequenceDetectionmethodbasedonOptimizedSequenceModel,ASD_OSM),并采用2次四分位距准则(DoubleQuantilerangescriterion,2Q准则)设置距离检测门限阈值,将超出阈值的序列判定为异常序列。某航天器传感器遥测子序列异常检测试验结果表明,提出的检测方法能够有效减少漏判,提高卫星遥测伪周期数据异常序列检测的准确性。 相似文献
5.
针对周期结构电磁特性参数求解问题,介绍了一种基于网络分析法、矢量拟合法,用来快速求解低剖面周期结构电磁特性参数的内部阻抗边界条件(INBC)与时域有限差分(FDTD)结合的INBC-FDTD计算方法。该方法将金属层的二端口频域阻抗参数曲线先通过矢量拟合法进行有理分式拟合,再对其进行时域变换后嵌入FDTD公式完成对电场、磁场的更新工作。所提方法完整地考虑了在金属层传输的电磁场,其二端口网络阻抗参数全面地考虑了端口之间的互耦问题。 相似文献
6.
作为行波类真空电子器件的核心组件,慢波结构是一种周期结构,其场可以有无限多个模式,每个模式由无穷多个空间谐波构成.每个空间谐波有相应的色散曲线且曲线各段有不同的特性.提出了周期结构色散特性的全维度开发的概念,并以一种可用微电机系统(MEMS)技术加工的折叠波导(FWG)慢波结构为例,对其色散特性进行了分析,利用这些色散特性开展了行波管(TWT)、返波管(BWO)等传统器件的研究工作,同时提出了过模器件、带边振荡器(BO)和谐波放大器(THAT)等新型器件,这些器件的实验研究则以W波段及其以上频率为主,最后给出了突破的关键技术以及测试得到的器件的主要性能. 相似文献
7.
随着深空探测成为航天领域的研究热点,与其密切相关的三体问题基础研究也日益重要,尤其是在深空探测任务设计中处于基础地位的共线平动点附近运动的研究,更是具有重要的工程应用价值。在圆型限制性三体问题下,对共线平动点附近运动近似解析解的研究已经较为全面,但在更接近真实情况、更具一般性的椭圆型限制性三体问题下,相应的研究却相对较少。针对此背景,参考借鉴圆型限制性三体问题的研究方法,首先根据平动点的特性计算出平动点的位置,然后将非线性三体动力学模型在共线平动点处线性化,最后结合线性系统理论,获得了椭圆型限制性三体问题下共线平动点附近运动的近似解析解,并将其与经典的圆型限制性三体问题下的近似解析解进行对比分析,仿真结果证明了方法的有效性,同时也表明所推导的椭圆型限制性三体问题解析解相比圆型限制性三体问题解析解具有更高的精度。 相似文献
8.
Minghu Tan Colin McInnes Matteo Ceriotti 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(8):2099-2115
Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun–Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby. 相似文献
9.
P. Pergola 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The aim of the work is to design a low-thrust transfer from a Low Earth Orbit to a “useful” periodic orbit in the Earth–Moon Circular Restricted Three Body Model (CR3BP). A useful periodic orbit is here intended as one that moves both in the Earth–Moon plane and out of this plane without any requirements of propellant mass. This is achieved by exploiting a particular class of periodic orbits named Backflip orbits, enabled by the CR3BP. The unique characteristics of this class of periodic solutions allow the design of an almost planar transfer from a geocentric orbit and the use of the Backflip intrinsic characteristics to explore the geospace out of the Earth–Moon plane. The main advantage of this approach is that periodic plane changes can be obtained by performing an almost planar transfer. In order to save propellant mass, so as to increase the scientific payload of the mission, a low-powered transfer is considered. This foresees a thrusting phase to gain energy from a departing circular geocentric orbit and a second thrusting phase to match the state of the target Backflip orbit, separated by an intermediate ballistic phase. This results in a combined application of a low-thrust manoeuvre and of a periodical solution in the CR3BP to realize a new class of missions to explore the Earth–Moon neighbourhoods in a quite inexpensive way. In addition, a low-thrust transit between two different Backflip orbits is analyzed and considered as a possible extension of the proposed mission. Thus, also a Backflip-to-Backflip transfer is addressed where a low-powered probe is able to experience periodic excursions above and below the Earth–Moon plane only performing almost planar and very short transfers. 相似文献
10.
圆形限制性三体问题共线平动点附近的平动点轨道由于其独特的动力学特性, 在深空探测任务中有着重要价值, 这些轨道间的轨道转移问题值得进行系统性研究. 针对平动点轨道的计算与延拓, 提出了一种基于数值的系统性计算平动点轨道的方法以及状态伴随法的轨道稳定维持策略. 在此基础上, 通过对大量平动点轨道不变流形以及平动点相空间中心流形的研究, 设计了一套通过脉冲机动实现平动点轨道间轨道转移的系统性解决方案. 该方法充分利用平动点动力学特性, 在仿真验证中证实了方案的有效性, 为平动点轨道转移研究提供了新的思路. 相似文献
11.
Pooja Dutt R.K. Sharma 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
A study of the evolution of the periodic and the quasi-periodic orbits near the Lagrangian point L2, which is located to the right of the smaller primary on the line joining the primaries and whose distance from the more massive primary is greater than the distance between the primaries, in the framework of restricted three-body problem for the Sun–Jupiter, Earth–Moon (relatively large mass ratio) and Saturn–Titan (relatively small mass ratio) systems is made. Two families of periodic orbits around the smaller primary are identified using the Poincaré surface of section method – family I (initially elliptical, gradually becomes egg-shaped with the increase in the Jacobi constant C and elongated towards the more massive primary) and family II (initially egg-shaped orbits elongated towards L2 and gradually becomes elliptical with the increase in C). The family I in the Sun–Jupiter and Saturn–Titan systems contains two separatrix caused by third-order and fourth-order resonances, while the Earth–Moon system has only one separatrix which is caused by third-order resonances. Also in the Sun–Jupiter and the Saturn–Titan systems, family I merge with family II, around Jacobian constant 3.0393 and 3.0163, respectively, while in the Earth–Moon system, family II evolves separately from two different branches. The two branches merge at C = 3.184515. In the Earth–Moon system, the family II contains a separatrix due to third-order resonances which is absent in the other two systems. 相似文献
12.
Edward Belbruno Francesco Topputo Marian Gidea 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(8):1330-1351
An interesting dynamics is studied in the restricted three-body problem where a particle abruptly transitions between resonance states, called a resonance hop. It occurs in a region about the secondary mass point which supports weak capture. This region, called a weak stability boundary, was recently proven to give rise to chaotic dynamics. Although it was numerically known that the resonance hop was associated with this boundary, this process was not well understood. In addition, the dynamical structure of the weak stability boundary has not been well understood. In this paper, we give a way to reveal the global structure of the weak stability boundary associated to resonance motions. This structure is shown to be surprisingly rich in resonant periodic motions interconnected by invariant manifolds. In this case, nearly all the motions are approximately resonant in nature where resonance hops can occur. The correlation dimension of orbits undergoing resonant motions, associated to the weak stability boundary, is also examined. The dynamics analyzed in the present paper is related to that studied by J. Marsden et al. under the perspective of Lyapunov orbits and the associated invariant manifolds. Applications are discussed. 相似文献