首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为提高聚合物浸渍裂解法制备的C/C-ZrC-SiC复合材料的抗烧蚀性能,采用化学气相沉积(CVD)技术对材料进行了SiC涂层表面封孔处理,并考察材料在氧乙炔环境中的烧蚀行为,明确CVD-SiC涂层对材料的抗烧蚀性能的作用。研究结果表明,CVD-SiC涂层封孔处理后材料表现出优异的抗烧蚀性能,烧蚀240 s后,其线烧蚀率仅为0.94×10-3mm/s,较无涂层材料的降低了39.4%。在烧蚀过程中,中心区域涂层及基体材料的演变过程如下:SiO_2膜包覆ZrO_2结构的形成→SiO_2膜失效→基体中Zr C和SiC的氧化→ZrO_2致密保护层的形成。SiC涂层对材料烧蚀性能的贡献主要体现在以下两方面:烧蚀中心区域的SiC涂层被氧化成SiO_2,其蒸发带走大量的热流,降低了材料的烧蚀温度;此外,SiC涂层的存在有效减少了材料内部的氧化及裂纹的形成。  相似文献   

2.
采用热压烧结法制备了ZrCp/W复合材料环形试样,测试了该复合材料试样在发动机试车条件下的热震烧蚀性能。结果表明:ZrCp/W复合材料具有良好的抗热震和耐烧蚀性能.试验后试样整体结构完好,未出现炸裂和破碎的现象,线烧蚀率仅为-0.05mm/s。该复合材料的主要烧蚀机制是机械剥蚀,此外还有熔化烧蚀和热化学烧蚀。  相似文献   

3.
采用地面试车试验考核了固体火箭发动机用C/SiC导流管的烧蚀性能,并对C/SiC导流管的烧蚀机理进行了探讨。结果表明:导流管轴向线烧蚀率变化较大,沿气流方向呈上升趋势。材料的线烧蚀率从进口处的0.018mm/s增至出口处的0.032mm/s,且导流管中间段烧蚀稳定性明显优于进口段和出口段。同时,C/SiC导流管的烧蚀机制主要是粒子冲刷和机械剥蚀共同作用的结果。  相似文献   

4.
采用反应熔渗工艺(RMI)快速制备了不同碳化硅含量的C/C-SiC复合材料,通过氧-乙炔烧蚀试验,测试了材料的烧蚀性能。利用SEM/EDS表征了复合材料烧蚀后的表面形貌和成分,分析了碳化硅含量对复合材料烧蚀性能的影响。结果表明,随着基体中碳化硅含量的提高,烧蚀过程中生成的二氧化硅保护膜更加致密,导致C/C-SiC复合材料的烧蚀率逐渐降低。在此基础上,利用优化工艺制备了密度均匀的大尺寸C/C-SiC构件,经过地面热试车考核,构件接近零烧蚀,满足发动机热试车的应用。  相似文献   

5.
三维针刺C/C-SiC复合材料的烧蚀性能   总被引:2,自引:0,他引:2  
采用"化学气相渗透+先驱体浸渍裂解"(CVI+PIP)混合工艺,制备了三维针刺C/C-SiC复合材料,使用氧气流量和乙炔流量之比为2∶1的氧乙炔焰,研究了复合材料的烧蚀性能,烧蚀时间长达600 s;分别用扫描电镜和表面能谱,分析了烧蚀表面的形貌和成分。结果表明,复合材料的线烧蚀率和质量烧蚀率的平均值分别是0.004 3 mm/s和0.001 4 g/s。烧蚀表面不同区域微观形貌和烧蚀机理不同,烧蚀中心以基体氧化流失、C纤维的氧化以及气流冲刷为主;在过渡区域,烧蚀是以SiC基体的氧化和气流冲刷为主;烧蚀边缘则以SiC基体的热氧化为主。C/C-SiC复合材料在氧-乙炔条件下的烧蚀机制是热化学烧蚀、热物理烧蚀和机械冲刷的综合作用。  相似文献   

6.
为了提高C/SiC复合材料耐高温性能,采用泥浆浸渍裂解与真空化学气相沉积(CVD)在材料表面制备了SiC/CVD SiC复合涂层,通过XRD、SEM分析了涂层组成与结构;研究了复合涂层的高温抗氧化(700~1 500℃)和抗热震性能。结果表明,泥浆浸渍法制备的SiC涂层具有一定的封孔效果,可使材料开孔率下降,但高温抗氧化效果并不佳,1 200℃氧化10 min后材料弯曲强度保留率下降明显仅有86%。CVD SiC涂层结构致密,与SiC封孔涂层结合较好,在700~1 500℃具有较好的抗氧化效果,随着氧化温度的升高,氧化后涂层完好,表面O元素逐渐增加,材料失重率缓慢增加但不大于0.5%,且材料性能并未下降。涂层材料在1 200℃-10 min短时热震5次后材料弯曲强度保留率仍有95%以上,且未出现开裂、剥落等热震损伤。在1 200℃-30 min长时热震10次后,涂层材料基本被完全氧化,材料失去保护作用,弯曲强度下降至90%左右。  相似文献   

7.
采用交联剂对聚碳硅烷(PCS)先驱体进行改性,以改性先驱体配置溶液制备了C/SiC复合材料。在制备过程中,由于改性先驱体较高的陶瓷产率,缩短了复合材料基体致密化周期,气孔率降低到7.2%,密度提升到2.01 g/m~3。在改善试样显微结构的同时,改性先驱体能够明显提升C/SiC复合材料力学性能,弯曲强度提高到459.4 MPa,断裂韧性提升到13.6MPa·m~(1/2),相比单组分PCS先驱体分别提高了51.9%和32.0%。烧蚀性能考核表明,试样的线烧蚀率和质量烧蚀率分别为8.3×10~(-3) mm/s和4.3×10~(-3) g/s,相比单组分PCS制备的试样分别降低了85.7%和73.1%。通过对试样内部显微结构和考核后形貌进行分析,结果表明试样力学和烧蚀性能的提升主要得益于致密化的基体以及基体对纤维很好的保护作用。  相似文献   

8.
以葡萄糖作为碳源,硅溶胶作为硅源,氧氯化锆作为锆源,采用水热共沉积-碳热还原法制备了C/C-ZrC-SiC复合材料,研究了材料的烧结温度对C/C-ZrC-SiC复合材料的微观形貌、力学性能和耐烧蚀性能的影响。结果表明,烧结温度对水热共沉积制备C/C-ZrC-SiC复合材料的性能影响显著。水热共沉积制备的C/C-ZrO_2-SiO_2陶瓷在1600℃下烧结,可获得C/C-ZrC-SiC复合材料,ZrC和SiC陶瓷相颗粒粒径约为500 nm,在基体中均匀分布。1600℃烧结的C/C-ZrC-SiC复合材料表现出最佳的力学性能和抗烧蚀性能,其最大弯曲强度为173.8 MPa,质量烧蚀率和线烧蚀率分别为1.28×10~(-4)g/(cm~2·s)和1.67μm/s。过高的烧结温度导致晶粒粗大、孔隙缺陷增多,使得复合材料力学性能恶化、抗烧蚀性能大幅降低。  相似文献   

9.
采用溶胶-凝胶法制备了C/SiC刹车材料硼硅玻璃防氧化涂层。用FTIR、XRD、TG-DSC研究了溶胶到玻璃的形成过程,并分析了硼硅玻璃涂层的防氧化性能及抗热震性能。结果表明,所得硼硅玻璃涂层均匀、致密,并与基体结合紧密。在800℃,硼硅玻璃涂层具有优异的防氧化性能,良好的高温稳定性和抗热震性能,尤其具有优良的耐海水侵蚀性能。在800℃氧化10 h,未经海水浸泡的涂层样失重率约为0.33%;经过海水浸泡的涂层样失重率约为2.36%。经50次热震(共氧化10 h)后,涂层保持完好,失重率约为9.79%。  相似文献   

10.
以PZC为有机锆先驱体原材料,采用A,B,C三种PIP工艺路线制备了不同ZrC含量的C/Si C-ZrC复合材料,并对C/Si C-ZrC复合材料的组成、微观结构、力学性能、烧蚀性能及作用机理进行了测试和分析。结果表明,有机锆先驱体制备的C/Si C-ZrC复合材料烧蚀性能有大幅提高,但其力学性能却存在一定程度的下降,并且随着ZrC含量的增加,C/SiC复合材料的力学性能呈现出逐渐降低的趋势,其质量烧蚀率和线烧蚀率呈现出先减小后增大的趋势。  相似文献   

11.
TiC和ZrC颗粒增强钨基复合材料的烧蚀研究   总被引:6,自引:3,他引:6  
用氧乙炔焰喷吹法对 Ti C和 Zr C增强钨基复合材料 ( Ti Cp/W和 Zr Cp/W两系列 )烧蚀性能进行了研究。结果表明 ,复合材料的质量烧蚀率和线烧蚀率由高到低的排列顺序为 :W>30 Ti Cp/W>4 0 Ti Cp/W>30 Zr Cp/W>4 0 Zr Cp/W( 30 Ti Cp/W表示含 Ti Cp 的体积分数为 30 % ,下同 )。对复合材料在烧蚀初期剧烈的升温过程进行了在线监测。 30 Ti Cp/W和 4 0 Ti Cp/W在烧蚀初期剧烈的升温过程中未能经受住约 2 0 0 0℃ /s升温热震而开裂 ,而 30 Zr Cp/W和 4 0 Zr Cp 能经受约 2 0 0 0℃ /s升温热震。在钨中加入 Ti C和 Zr C颗粒能明显提高钨的抗烧蚀性能 ,而且 Zr C颗粒比 Ti C颗粒更能提高 W的抗烧蚀性能。碳化物含量越高 ,材料的抗烧蚀性能越好。复合材料烧蚀机理是 W、Ti C和 Zr C的氧化烧蚀  相似文献   

12.
采用化学包覆法制备Mo-(10%) ZrC复合喷涂粉末,采用气氛保护等离子喷涂成形技术结合低压热等静压致密化技术制备内径为8 mm、壁厚16.5 mm、长30 mm的某实验型固体火箭发动机Mo/ZrC复合喷管,测试喷管在地面点火试车条件下的抗热震烧蚀性能。研究结果表明,气氛保护等离子喷涂成形Mo/ZrC复合喷管经1800℃、10 MPa处理60 min后,微细ZrC颗粒均匀分布,断口晶粒仅2~5μm,致密度达94.5%。经1800℃、10 MPa处理300 min后,Mo/ZrC复合喷管由层片结构转化为颗粒状结构,致密度提高至96.8%,显微硬度及拉伸强度分别达259.8 HV0.025及138.9 MPa。地面试车实验后,Mo/ZrC复合喷管整体结构完好,未出现炸裂和破碎现象,抗热震烧蚀性能良好,其线烧蚀率仅为0.18 mm/20 s。地面试车过程中,机械剥蚀、熔化烧蚀及热化学烧蚀等三种烧蚀机制同时发生,Mo/ZrC复合喷管烧蚀程度依次为喉部收敛段扩散段。  相似文献   

13.
C/C-B-SiC复合材料的烧蚀性能研究   总被引:4,自引:0,他引:4  
采用聚合物浸渗裂解法制备了C/C-B-S iC复合材料,用H2-O2焰法对其烧蚀性能进行了研究,并推测了C/C-B-S iC复合材料的烧蚀机理。结果表明,C/C-B-S iC复合材料的烧蚀率随材料密度ρ的增加呈下降趋势,ρ=1.50 g/cm3的C/C-B-S iC复合材料的线烧蚀率相当于ρ=1.86 g/cm3的C/C复合材料的61%,烧蚀时间为60 s时的质量烧蚀率相当于ρ=1.77 g/cm3的C/C复合材料。C/C-B-S iC复合材料在H2-O2焰条件下的烧蚀机制是热化学烧蚀(氧化和升华)和机械冲刷的综合作用。  相似文献   

14.
为了研究SiC及其前驱体聚碳硅烷对聚合物浸渍裂解法(PIP)制备的C/C-ZrC-SiC复合材料的影响,本文以聚碳硅烷和有机锆分别为SiC和ZrC的前驱体,利用PIP法制备了C/C-ZrC和C/C-ZrC-SiC两组复合材料,采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对材料的微观结构进行分析,在氧乙炔环境下考核了复合材料的抗烧蚀性能,并选用热分析仪对两组材料的热物理性能进行对比分析。结果表明,聚碳硅烷因其较高的SiC产率可以提高C/C-ZrC-SiC复合材料中陶瓷基体的致密程度,其产物SiC改善了陶瓷基体与碳基体的界面结合状态。氧乙炔烧蚀120 s后,与C/C-ZrC相比,SiC的加入使C/C-ZrC-SiC表现出更优异的抗烧蚀性能,主要归功于烧蚀中心表面熔融ZrO_2保护层和烧蚀边缘致密SiO_2层的形成。此外,SiC有利于提高材料的导热性能,同时降低其热膨胀系数。  相似文献   

15.
C/C复合材料ZrC/SiC抗烧蚀涂层性能研究   总被引:2,自引:0,他引:2  
综合利用固相浸渗法和涂刷法,在C/C复合材料表面制备了一种ZrC/SiC抗烧蚀涂层.通过氧-乙炔实验测试了所制备ZrC/SiC涂层的抗烧蚀性能,并用XRD、SEM分析了涂层烧蚀前后的物相组成及微观形貌,研究了涂层的抗烧蚀机理.结果表明,此ZrC/SiC涂层与基体的结合性能及热稳定性能良好;涂层烧蚀机理是热化学烧蚀、热物...  相似文献   

16.
为确定最佳组分含量,采用正交实验法对“酚醛树脂(PF) 纳米S iO2粉 石墨粉 ZrO2粉 短切炭纤维”胶粘剂体系进行了配方研究,并探讨了组分含量对胶粘剂性能的影响。得到的最佳配方为“PF 2%纳米S iO2粉 1%石墨粉 1%ZrO2粉 4%短切炭纤维”,其对石墨材料的粘接强度达11.6 MPa,胶粘剂本体线烧蚀率为0.058 mm/s,质量烧蚀率为0.0732 g/s。胶粘剂可进一步用于粘接修复C/C复合材料喉衬构件的工艺缺陷。  相似文献   

17.
炭/炭复合材料防氧化涂层研究进展   总被引:1,自引:0,他引:1  
介绍了近两年国内外开发的几种C/C复合材料高性能抗氧化涂层的微观结构和高温氧化行为,表明SiC-Al2O3-莫来石、SiC晶须增韧陶瓷、硅酸钇等涂层1500℃静态空气环境下均具有长时间防氧化能力,部分涂层还具有优良的抗热震性能。其中采用原位形成法制备的硅酸钇涂层具有极佳的抗氧化性能,可在1600℃空气中对C/C复合材料有效保护200 h。此外,还介绍了部分涂层的失效机理,并就C/C复合材料抗氧化涂层下一步研究重点提出一些见解。  相似文献   

18.
以2.5D无纬布/网胎叠层针刺预制体为增强体,采用化学气相渗透和树脂浸渍裂解法制备了密度约1.35 g/cm3的热解碳C/C、热解碳+树脂碳C/C两种坯体,再经反应熔渗获得C/C-SiC复合材料,分析了不同碳基体组分C/C材料的熔渗特性及其微结构、拉伸性能及氧乙炔烧蚀性能的变化规律。结果表明:相比热解碳的“薄壳”型孔隙结构,树脂碳的“狭缝”型孔结构增大了液Si与碳基体的接触面积,提高了熔渗动力,获得致密度和SiC含量高的C/C-SiC复合材料,提升抗烧蚀性能,在氧乙炔火焰下经400~600 s烧蚀的线烧蚀率降低24%,但树脂碳对液Si的诱导渗透增加了骨架承载体的损伤,使树脂碳+热解碳基C/C-SiC复合材料室温拉伸强度(104±3)MPa低于热解碳基C/C-SiC的(118±3)MPa。  相似文献   

19.
采用CVI+PIC工艺制备了密度为1.35~1.45 g/cm3的C/C多孔体,对多孔体进行LSI快速获得C/C-SiC防热材料,表征了防热材料的微观结构、弯曲性能,对其进行300 s氧乙炔烧蚀试验,检测了筒形C/C-SiC燃烧室热结构缩比构件的整体承压性能。结果表明,采用CVI+PIC方法成型的C/C多孔体LSI后,液相Si主要与树脂炭反应,生成的SiC位于纤维束之间的大孔孔隙中,由炭纤维束与其内部和包覆在纤维束表层的热解炭构成的增强相未受液Si浸蚀。制备的C/C-SiC弯曲强度达122 MPa,弯曲破坏呈现明显的假塑性断裂;筒形C/C-SiC燃烧室热结构缩比件(外径175 mm、壁厚7.5 mm、高度200 mm)水压爆破压力为5.2 MPa。C/C-SiC材料氧乙炔试验线烧蚀率0.000 2~0.000 3 mm/s、质量烧蚀率0.000 1~0.000 3 g/s,材料的烧蚀以热化学烧蚀为主,烧蚀型面整体平滑,烧蚀表面形成了SiO2抗氧化玻璃相和Si纳米线。  相似文献   

20.
采用"化学气相渗透法 聚合物先驱体浸渍裂解法"(CVI PIP)混合工艺制备出连续炭纤维增强碳化硅陶瓷复合材料(3D C/SiC)推力室,综合考察了复合材料的机械性能、微观结构和气密性能,以及姿控、轨控发动机环境试验考核.结果表明,"CVI PIP"混合工艺制备C/SiC复合材料不仅工艺周期缩短,而且材料性能优异.复合材料密度达2.1 g/cm3,室温弯曲强度和断裂韧性(KIC)分别达到520 MPa和17.9 MPa·m1/2;而且断裂破坏行为呈现典型的韧性模式.C/SiC复合材料推力室的高温气密性、抗氧化和抗烧蚀性能通过了双燃料液体发动机试验考核.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号