首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
曾耀寰 《飞碟探索》2013,(11):62-63
天文望远镜可分为折射和反射望远镜,1609年,伽利略从荷兰听到望远镜的新技术,自行制造出折射望远镜。1668年,牛顿用凹面镜聚焦,设计出反射望远镜,解决透镜的色差问题。还有一种望远镜不用透镜和反射镜,也能搜寻宇宙天体,这个望远镜和爱因斯坦有关。爱因斯坦没有发明或制造望远镜,但根据广义相对论,我们利用时空的扭曲,可以达到望远镜的功能,观测几十亿光年远的天体。说穿了,爱因斯坦的望远镜是利用万有引力,观察非常遥远的星体,甚至可以“看到”没有电磁波的暗物质,堪称为引力望远镜。  相似文献   

2.
梦天 《太空探索》2013,(2):24-26
天文观测的三次变革人类的天文观测经历了三次革命性的变革。第一次变革是从肉眼观星进入到利用光学天文望远镜观测天体,它以17世纪初意大利科学家伽利略发明天文望远镜为标志。第二次变革是从人类只能观测天体的可见光进入到接收天体的无线电波,它以20世纪30年代射电望远镜的诞生为标志。第三次变革是从人类局限于在地面上观测天体到进入太空开展天文观测,它始  相似文献   

3.
正天文望远镜是天文学家观测天体的重要工具,可以毫不夸张地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜各方面性能的提高和改进,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。"你是我的眼",这句脍炙人口的歌词准确道出了现代天文望远镜与天文工作者之间的关系。从伽利略磨制的第一架33倍率小型折射望远镜,到2016年在中国贵州省平塘县克度镇落成的500米口径球面射电望  相似文献   

4.
1609年伽利略发明了天文望远镜,并通过望远镜得到了一系列重大发现,向世人证明了望远镜的重要作用,随之许多天文学家也投入到使用望远镜观测宇宙天体的行列中。与此同时,还有一批天文学家对望远镜的光学性能产生了极大兴趣,他们致力于改进望远镜的工作,其中有一个人对于改进望远镜和推广望远镜的使用做出的贡献最大,并且是伽利略从未谋面的挚友,这个人就是众所周知的著名德国天文学家开普勒。  相似文献   

5.
<正>由于天体发射出的X射线在穿过大气层时大部分会被吸收,因此使用空间望远镜,在大气层以外对天体辐射的X射线进行观测,是X射线天文学的主要观测方式。从20世纪70年代至今,不少X射线空间望远镜被发射升空,为我们揭示了肉眼看不到的宇宙秘密。  相似文献   

6.
在观天巨眼系列前十三篇中,我们介绍了光学望远镜,它们只能用来观测天体发出的可见光。其实,天体还发出许多种我们人类的眼睛看不见的光线。如射电波(实际上就是无线电波,天文学上将其称作射电波)、红外线、紫外线、X射线、γ射线等。古代和近代的天文学家不知道这些不可见光线的存在,他们只能在可见光范围内观测宇宙、研究天体。近一二百年来,人们才陆陆续续发现这些看不见的光线,并且陆陆续续研制出许多观测这些天体辐射的特殊的望远镜,使人类对宇宙的认识越来越全面,越来越深入。  相似文献   

7.
在观天巨眼系列前十三篇中,我们介绍了光学望远镜,它们只能用来观测天体发出的可见光.其实,天体还发出许多种我们人类的眼睛看不见的光线.如射电波(实际上就是无线电波,天文学上将其称作射电波)、红外线、紫外线、X射线、γ射线等.古代和近代的天文学家不知道这些不可见光线的存在,他们只能在可见光范围内观测宇宙、研究天体.近一二百年来,人们才陆陆续续发现这些看不见的光线,并且陆陆续续研制出许多观测这些天体辐射的特殊的望远镜,使人类对宇宙的认识越来越全面,越来越深入.  相似文献   

8.
借助天文望远镜观测宇宙,是人类探索宇宙奥秘的主要手段之一,而哈勃空间望远镜堪称天文望远镜中的“大哥大”。自1990年4月25日由美国“发现”号航天飞机将“哈勃”释放到太空之后,这只“太空眼”已经环绕地球飞行16亿公里  相似文献   

9.
张健 《飞碟探索》2001,(5):16-17
微晶玻璃,全称超低膨胀微晶玻璃,也有人简称零膨胀玻璃。这种玻璃有膨胀系数极低等重要特性,因此它是制造大型反射式光学天文望远镜镜片的优质材料。   谈到光学天文望远镜,人们会联想到 1609年意大利物理学家兼天文学家伽利略发明的折射式光学天文望远镜, 1671年英国物理学家牛顿又发明了反射式光学天文望远镜并用于天文观测的历史。光学天文望远镜的发明,是天文观测工具一个划时代的进步,它结束了人类只能依靠肉眼观测天体的历史,反射式光学天文望远镜的发明还奠定了现代大型光学天文望远镜的基础。   自发明光学天文望远镜以…  相似文献   

10.
人类自从进入空间时代以来,天文学家就梦想把望远镜送到太空中去观察宇宙,因为浓密的大气层是天文学家观测研究宇宙天体的一大障碍。有一位科学家描绘得很形象,他说:“在地面上观测恒星是很费劲的,就像从湖底去看飞鸟一样困难。”地球大气对天文观测的影响主要有两个方面:第一,大气对光有衍射效应,一个点光源经过大气以后会变成一个衍射斑,比如用地面望远镜不可能把一对近距双星分辨清楚,这就是大气衍射效应造成的,这大大降低了地面望远镜的  相似文献   

11.
自古以来,人类就对宇宙太空充满了无限的深情。古代的先民们在生活和生产的实践中,通过观察各种天体的出没和运行情况,认识到昼夜更迭、四季交替的规律,学会了确定时间和方向。这些知识的掌握成为他们在自然界中求得生存和发展的必不可少的条件。天文学由此也成为一门发源最早的、最古老的科学。 观察和测量是天文学最基本的内容。在没有望远镜的年代,人们只能凭借自己的双眼来发现和观察各类天体射向我们的光,通过这些光测量和研究它们的运动规律和各种性质。至今,我国南京紫金山天文台上还保留着我国古代观天用的两架仪器:浑仪和简仪;北京古观象台上也还保留着玑衡抚辰仪等古代八大观天仪器。 自从1609年意大利科学家伽利略发明了天文望远镜之后,情况彻底变化了。古人幻想中的千里眼变成了现实。 当年伽利略望远镜的口径仅仅4厘米多,而今全世界口径8米以上的大望远镜,已经不是寥寥无几。更重要的是,“天文望远镜”这个名词的含意也得到了极大的扩展。过去300多年当中,天文望远镜这词汇的意义等同于光学望远镜,而今天文望远镜已经发展成为一个庞大的家族。除了最古老的光学望远镜之外,还有射电望远镜、红外望远镜,紫外望远镜,X射线望远镜、γ射线望远镜等等。它们有的建在高山之巅,有的建在大漠荒原,还  相似文献   

12.
图说天文望远镜400周年系列连载之三以反射镜为物镜的望远镜,叫反射望远镜,是天文望远镜中最常见的形式.如果把天文望远镜发展历程比作枝繁叶茂的大树,那么折射望远镜的发展脉络只是这棵大树的一个支杆(尽管是可能最重要的支杆之一),而真正的主杆是反射望远镜,近现代的太阳望远镜、射电望远镜和空间望远镜这几个支杆都是从反射望远镜这个主杆衍生而来的,而当前的多镜面望远镜和超巨大望远镜就是反射望远镜这个主杆的目前的最前端.由此可知,反射望远镜的历史在天文望远镜发展史中的地位是何等重要.现在我们来介绍它的发展历程.  相似文献   

13.
无论是刚入门的天文初学者或是有经验的观测者,双筒望远镜都是不可或缺的天文观测最佳辅助工具,它有着专业天文望远镜无法取代的优点。就光学特性而言,一架适合看星星的双筒望远镜成像明亮、视野宽阔,就机械性能而言,双筒望远镜较专业天文望远镜轻便、操作容易、机动性强。对于想一窥星空奥秘的初学者而言,购买双筒望远镜要比投资专业天文望远镜在经济上的负担轻得多,所以笔者在此要推荐大家使用双筒望远镜了。下面我们首先讨论一下如何选择双筒望远镜,其次再说说双筒望远镜在天文观测中的实际应用。  双筒望远镜是一种非常实用的…  相似文献   

14.
以反射镜为物镜的望远镜,叫反射望远镜,是天文望远镜中最常见的形式。如果把天文望远镜发展历程比作枝繁叶茂的大树,那么折射望远镜的发展脉络只是这棵大树的一个支杆(尽管是可能最重要的支杆之一),而真正的主杆是反射望远镜,近现代的太阳望远镜、射电望远镜和空间望远镜这几个支杆都是从反射望远镜这个主杆衍生而来的,而当前的多镜面望远镜和超巨大望远镜就是反射望远镜这个主杆的目前的最前端。由此可知,反射望远镜的历史在天文望远镜发展史中的地位是何等重要。现在我们来介绍它的发展历程。  相似文献   

15.
太空新航线     
欧洲下一代 红外空间望远镜更名 1800年12月12日,生于德国的英国天文学家赫歇尔发现了红外线。200年后的这一天,来自世界各地的天文学家们在一次研讨会上,把欧洲下一代红外天文望远镜更名为“赫歇尔空间观测台”。该望远镜原名为“远红外与和亚毫米波望远镜(FIRST)”。会议期间,天文学家们还重新确定了“赫歇尔”望远镜的任务,包括了解宇宙中各星系和恒星最初是如何形成的;与它的前任——欧洲“红外空间望远镜”一样,继续在宇宙的空隙中找水;研究海王星轨道外的凯珀带彗星及小行星类天体,等等。目前人  相似文献   

16.
正斯皮策太空望远镜作为NASA的四大空间望远镜之一,于2003年8月25日发射升空,以观测天体红外波段的方式研究充满无限未知的宇宙,是人类送入太空的最大的红外望远镜。2020年1月30日,斯皮策太空望远镜正式"退役"。它在太空中工作的16年间,拍摄了大量惊为天人的图像,揭示了红外宇宙的美丽景象。斯皮策的命名,是为了纪念天体物理学家莱曼·斯皮策。他在20世纪60年代首先提出把望远镜放入太空以消除地球大气层遮蔽效应的建议,曾直接造就了"哈勃"太空望远镜的诞生。  相似文献   

17.
日月 《太空探索》2007,(6):56-57
2006年3月27日,紫金山天文台盱眙观测基地正式启用了一架崭新的天文望远镜——1.2米近地天体探测望远镜,它配备了4K×4KCCD探测系统,具有视场大、光力强等优点,可探测到暗至21等的天体。同  相似文献   

18.
覃育 《飞碟探索》2006,(10):48-49
望远镜的转仪钟,是驱动望远镜以天体周日运动的速度绕极轴旋转的机械转动装置。19世纪时,仪器转动的动力由重锤或发条给出,仪器速度的恒定也是靠机械离心调速来达到。现代的大型望远镜或普及型望远镜一般都采用各式的电机驱动.经过变速而达到恒动的目的。为了取得一张理想的天体摄影作品,高精度的望远镜驱动系统——转仪钟是必不可少的。因为一个暗弱天体的拍摄往往需要数分钟、数十分钟乃至几小时的跟踪.还要考虑极轴调整误差、蒙气差等因素,另外对赤经和赤纬的微调也有较高的要求。如果是较高级的天文望远镜,还包括赤经和赤纬的快动、慢动及微动。  相似文献   

19.
阳光 《太空探索》2001,(9):18-19
通过专用探测器,人类已对月亮表面进行了很详尽的测绘。因此,业余天文爱好者已没有必要再去绘制“月图”。但给月亮画像还是自有一番乐趣。大多数人画月亮是因为它的美景,或是将它看作“静物”来写生。 望远镜和天空 本文讲的画月均指使用典型的业余天文望远镜。从一定的角度上说,观测和描绘月亮(及行星)要比观测深空天体容易。由于月亮和行星亮度较高,所以天色黑暗和城市灯光都不会对画月有大的妨碍。  相似文献   

20.
日本文部省的宇宙科学研究所和通产省,现正共同研制用于搭载在从事无人空间实验和观测的自由飞行器(SFU)上的“红外线天体望远镜”。预计1992年第一次发射时搭载它。设计在今年底结束,1988年计划着手工程模型(EM)设计。宇宙所研究的红外线天体望远镜是一个直径20厘米的小型望远镜。灵敏度好,其能力可望相当于地面直径为2米级的红外线天体望远镜。它在太空中的环境与地面截然不同,既不存在吸收红外线的水蒸汽和二  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号