共查询到20条相似文献,搜索用时 15 毫秒
1.
D Hodick B Buchen A Sievers 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1183-1189
The rhizoids of the green alga Chara are tip-growing cells with a precise positive gravitropism. In rhizoids growing downwards the statoliths never sediment upon the cell wall at the very tip but keep a minimal distance of approximately 10 micrometers from the cell vertex. It has been argued that this position is attained by a force acting upon the statoliths in the basal direction and that this force is generated by an interaction between actin microfilaments and myosin on the statolith membrane. This hypothesis received experimental support from (1) effects of the actin-attacking drug cytochalasin, (2) experiments under microgravity conditions, and (3) clinostat experiments. Using video-microscopy it is now shown that this basipetal force also acts on statoliths during sedimentation. As a result, many statoliths in Chara rhizoids do not simply fall along the plumb line while sedimenting during gravistimulation, but move basipetally. This statolith movement is compared to the ones occurring in the unicellular Chara protonemata during gravistimulation. Dark-grown protonemata morphologically closely resemble the rhizoids but respond negatively gravitropic. In contrast to the rhizoids a gravistimulation of the protonemata induces a transport of statoliths towards the tip. This transport is mainly along the cell axis and not parallel to the gravity vector. It is stressed that the sedimentation of statoliths in Chara rhizoids and protonemata as well as in gravity sensing cells in mosses and higher plants is accompanied by statolith movements based on interactions with the cytoskeleton. In tip-growing cells these movements direct the statoliths to a definite region of the cell where they can sediment and elicit a gravitropic curvature. In the statocytes of higher plants the interactions of the statoliths with the cytoskeleton probably do not serve primarily to move the statoliths but to transduce mechanical stresses from the sedimenting statoliths to the plasma membrane. 相似文献
2.
G Perbal 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(6):723-729
The mode of gravisensing in higher plants is not yet elucidated. Although, it is generally accepted that the amyloplasts (statoliths) in the root cap cells (statocytes) are responsible for susception of gravity. However, the hypothesis that the whole protoplast acts as gravisusceptor cannot be dismissed. The nature of the sensor that is able to transduce and amplify the mechanical energy into a biochemical factor is even more controversial. Several cell structures could potentially serve as gravireceptors: the endoplasmic reticulum, the actin network, the plasma membrane, or the cytoskeleton associated with this membrane. The nature of the gravisusceptors and gravisensors is discussed by taking into account the characteristics of the gravitropic reaction with respect to the presentation time, the threshold acceleration, the reciprocity rule, the deviation from the sine rule, the movement of the amyloplasts, the pre-inversion effect, the response of starch free and intermediate mutants and the effects of cytochalasin treatment. From this analysis, it can be concluded that both the amyloplasts and the protoplast could be the gravisusceptors, the former being more efficient than the latter since they can focus pressure on limited areas. The receptor should be located in the plasma membrane and could be a stretch-activated ion channel. 相似文献
3.
K H Hasenstein 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(6):677-685
The principle of establishing and maintaining a gravitropic set point angle depends on gravisensing and a subsequent cascade of events that result in differential elongation of the responsive structures. Since gravity acts upon masses, the gravisensing mechanisms of all biological systems must follow the same principle, namely the sensing of some force due to differential acceleration of the perceiving entity and a reference structure. This presentation will demonstrate that gravisensing can be accomplished by various means, ranging from cytoskeletal organization, mechano-elastic stress to perturbation of electric signals. However, several arguments indicate that sedimentation of either dense plastids (statoliths), the entire protoplast, or a combination of these represents the primary step in graviperception in plants. In fungi, nuclei and cytoskeletal proteins are believed to form a network capable of gravisensing but sedimenting organelles that may function as statoliths have been identified. Theoretical and practical limitations of gravisensing and detection of acceleration forces necessitate microgravity experiments to identify the primary perceptor, subsequent biochemical mechano-transduction, and biological response processes. 相似文献
4.
N Stromgren Allen P Chattaraj D Collings E Johannes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(8):1631-1637
In Zea mays L., changes in orientation of stems are perceived by the pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. Gravity is perceived in the bundle sheath cells, which contain amyloplasts that sediment to the new cell base when a change in the gravity vector occurs. The mechanism by which the mechanical signal is transduced into a physiological response is so far unknown for any gravity perceiving tissue. It is hypothesized that this involves interactions of amyloplasts with the plasma membrane and/or ER via cytoskeletal elements. To gain further insights into this process we monitored amyloplast movements in response to gravistimulation. In a pharmacological approach we investigated how the dynamics of plastid sedimentation are affected by actin and microtubule (MT) disrupting drugs. Dark grown caulonemal filaments of the moss Physcomitrella patens respond to gravity vector changes with a reorientation of tip growth away from the gravity vector. MT distributions in tip cells were monitored over time and MTs were seen to accumulate preferentially on the lower flank of the tip 30 min after a 90 degree turn. Using a self-referencing Ca2+ selective ion probe, we found that growing caulonemal filaments exhibit a Ca2+ influx at the apical dome, similar to that reported previously for other tip growing cells. However, in gravistimulated Physcomitrella filaments the region of Ca2+ influx is not confined to the apex, but extends about 60 micrometers along the upper side of the filament. Our results indicate an asymmetry in the Ca2+ flux pattern between the upper and side of the filament suggesting differential activation of Ca2+ permeable channels at the plasma membrane. 相似文献
5.
F D Sack J M Schwuchow T Wagner V Kern 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):871-876
Moss protonemata are a valuable system for studying gravitropism because both sensing and upward curvature (oriented tip growth) take place in the same cell. We review existing evidence, especially for Ceratodon purpureus, that addresses whether the mass that functions in sensing is that of amyloplasts that sediment. Recent experiments show that gravitropism can take place in media that are denser than the apical cell. This indicates that gravity sensing relies on an intracellular mass rather than that of the entire cell and provides further support for the starch-statolith hypothesis of sensing. Possible mechanisms for how amyloplast mass functions in sensing and transduction are discussed. 相似文献
6.
P Todd 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):121-124
Published observations on the response times following gravistimulation (horizontal positioning) of Chara rhizoids and developing roots of vascular plants with normal and "starchless" amyloplasts were reviewed and compared. Statolith motion was found to be consistent with gravitational sedimentation opposed by elastic deformation of an intracellular material. The time required for a statolith to sediment to equilibrium was calculated on the basis of its buoyant density and compared with observed sedimentation times. In the examples chosen, the response time following gravistimulation (from horizontal positioning to the return of downward growth) could be related to the statolith sedimentation time. Such a relationship implies that the transduction step is rapid in comparison with the perception step following gravistimulation of rhizoids and developing roots. 相似文献
7.
M Braun B Buchen A Sievers 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(6):707-711
Gravitropic tip growth of Chara rhizoids is dependent on the presence and functional interaction between statoliths, cytoskeleton and the tip-growth-organizing complex, the Spitzenkorper. Microtubules are essential for the polar cytoplasmic zonation but are excluded from the apex and do not play a crucial role in the primary steps of gravisensing and graviresponse. Actin filaments form a dense meshwork in the subapical zone and converge into a prominent apical actin patch which is associated with the endoplasmic reticulum (ER) aggregate representing the structural center of the Spitzenkorper. The position of the statoliths is regulated by gravity and a counteracting force mediated by actomyosin. Reducing the acceleration forces in microgravity experiments causes a basipetal displacement of the statoliths. Rhizoids grow randomly in all directions. However, they express the same cell shape and cytoplasmic zonation as ground controls. The ultrastructure of the Spitzenkorper, including the aggregation of ER, the assembly of vesicles in the apex, the polar distribution of proplastids, mitochondria, dictyosomes and ER cisternae in the subapical zone is maintained. The unaltered cytoskeletal organization, growth rates and gravitropic responsiveness indicate that microgravity has no major effect on gravitropic tip-growing Chara rhizoids. However, the threshold value of gravisensitivity might be different from ground controls due to the altered position of statoliths, a possibly reduced amount of BaSO4 in statoliths and a possible adaptation of the actin cytoskeleton to microgravity conditions. 相似文献
8.
V D Kern F D Sack 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(6):713-716
Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (> or = l40nmol m-2 s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities < or = l00nmol m-2 s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities < or = 140nmol m-2 s-1. 相似文献
9.
O A Kuznetsov K H Hasenstein 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):887-892
The statoliths in Chara rhizoids are denser and more diamagnetic than the cytoplasm, therefore they can be displaced inside a living cell by a sufficiently strong high gradient magnetic field (HGMF). An experimental setup for intracellular magnetophoresis of statoliths was developed. The movement of statoliths and rhizoid growth was measured by video microscopy either under the influence of gravity or a HGMF equivalent to about 2 g. The contribution of the cytoskeleton to statolith motility was assayed before and after depolymerizing microtubules with oryzalin and F-actin with latrunculin B. Application of latrunculin caused immediate cessation of growth, clumping of statoliths, and application of HGMF resulted in higher displacement of statoliths. Oryzalin had no effect on the behavior of statoliths. The data indicate that magnetophoresis is a useful tool to study the gravisensing system and rheology of the Chara rhizoid. 相似文献
10.
C I Chaban E L Kordyum O T Demkiv 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(6):717-721
Moss protonemata exhibit negative gravitropism and the amyloplasts of the apical cell seem to play a key role in protonemal gravisensitivity. However, the mechanisms of this process are still poorly understood. Previously, we have shown that Ceratodon protonemata grown on agar-medium demonstrated greater gravicurvature than protonemata grown on medium with 11 mM glucose. In this study, we have examined whether gibberellic acid (GA), which promotes alpha-amylase expression, influences graviresponse of C. purpureus protonemata (strains WT-4 and WT-U) and how this event interacts with exogenous soluble sugars. After gravistimulation the WT-4 strain curved about twice as fast as the WT-U strain. However, responses of both strains to added substances were similar. High concentration of glucose (0.11 M) caused a decrease in protonema curvature, while the same concentration of sucrose did not significantly change the angles of curvature compared with controls. GA at 0.1 mM and higher concentrations inhibited gravitropism, and caused some apical cells to swell. The possible involvement of the carbohydrates in gravitropism is discussed. 相似文献
11.
O. T. Demkiv E. L. Kordyum O. R. Kardash O. Ya. Khorkavtsiv 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(12):1999-2004
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema. 相似文献
12.
R T Ripetskyj N A Kit C I Chaban 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1135-1139
The superficial cells of dark-grown moss shoots give rise to negatively gravitropic protonemata, whatever the orientation of the shoot. Shoot orientation, however, does affect from which side of the shoot the protonemata form and the direction of their growth. Protonemata from horizontal shoots grow out at a near-right angle to their supporting axes and are initiated more or less evenly along the upper side of the stem. Protonemata arising from vertically-oriented shoots in either an upright or an inverted position grow straight at an acute angle to the stem axis. The difference in the growth direction of the protonemata seems to be conditioned by the different position of the growth zone of the protonemal outgrowths, and subsequently that of the apical protonemal cells, with respect to the gravity vector. Observations suggest that the shoot protonemata, in conditions of clinorotation, persist in their original growth direction. Results also indicate that, in darkness, gravity determines only the site of protonemata initiation, not the process of initiation itself. Light, by contrast, by acting through both phytochrome and high-energy reaction systems, triggers the initiation process and defines the location of protonemata. 相似文献
13.
V D Kern F D Sack 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):941-949
Apical cells of moss protonemata represent a single-celled system that perceives and reacts to light (positive and negative phototropism) and to gravity (negative gravitropism). Phototropism completely overrides gravitropism when apical cells are laterally irradiated with relatively high red light intensities, but below a defined light intensity threshold gravitropism competes with the phototropic reaction. A 16 day-long exposure to microgravity conditions demonstrated that gravitropism is allowed when protonemata are laterally illuminated with light intensities below 140 nmol m-2s-1. Protonemata that were grown in darkness in microgravity expressed an endogenous tendency to grow in arcs so that the overall culture morphology resembled a clockwise spiral. However this phenomenon only was observed in cultures that had reached a critical age and/or size. Organelle positioning in dark-grown apical cells was significantly altered in microgravity. Gravisensing most likely involves the sedimentation of starch-filled amyloplasts in a well-defined area of the tip cell. Amyloplasts that at 1-g are sedimented were clustered at the apical part of the sedimentation zone in microgravity. Clustering observed in microgravity or during clino-rotation significantly differs from sedimentation-induced plastid aggregations after inversion of tip cells at 1-g. 相似文献
14.
O. T. Demkiv E. L. Kordyum O. R. Kardash O. Ya. Khorkavtsiv 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(12):1999
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema. 相似文献
15.
E L Kordyum 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1111-1120
Elucidation of the possibilities for higher plants to realize complete ontogenesis, from seed to seed, and to propagate by seeds in microgravity, is a fundamental task of space biology connected with the working of the CELSS program. At present, there are results of only 6 spaceflight experiments with Arabidopsis thaliana, an ephemeral plant which will flower and fruit in orbit. Morphogenesis of generative organs occurs normally in microgravity, but unlike the ground control, buds and flowers mainly contain sterile elements of the androecium and gynoecium which degenerate at different stages of development in microgravity. Cytological peculiarities of male and female sterility in microgravity are similar to those occurring naturally during sexual differentiation. Many of the seed formed in microgravity do not contain embryos. Hypotheses to explain abnormal reproductive development in microgravity are: 1) nutritional deficiency, 2) insufficient light, 3) intensification of the influence of the above-mentioned factors by microgravity, 4) disturbances of a hormonal nature, and 5) the absence of pollination and fertilization. Possible ways for testing these hypotheses and obtaining viable seeds in microgravity are discussed. 相似文献
16.
H Machemer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1243-1251
This introduction to a symposium considers established principles of mechanoreception and the physiology of excitable cells as a background of gravireception. From the perspective of experimental work in protists, current developments in the treatment and interpretation of graviresponses are addressed. 相似文献
17.
D W Deamer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(4):183-189
Polycyclic aromatic hydrocarbons (PAH) in the form of polymerized derivatives represent over 90% of the organic material of carbonaceous chondrites. It now appears likely that there was substantial survival of the organic content of meteoritic and cometary infall during late accretion, so that PAH would presumably be major components of the organic inventory present on the prebiotic Earth. An important question relative to chemical evolution and energy transduction is the nature of pigments which could be available to make light energy available to the earliest cellular forms of life. PAH and their derivatives all absorb light in the near UV and blue wavelengths, and are candidates for primitive pigments. We have explored this possibility in a model system consisting of mixtures of pyrene, fluoranthene and pyrene derivatives with hexadecane, dispersed in dilute salt solutions. Upon illumination, photochemical oxidation of the hexadecane occurs, with long-chain amphiphiles such as 2-hexadecanone and 2-hexadecanol as products. Because the reaction proceeds under strictly anaerobic conditions, the source of oxygen is apparently water. We also observed acid pH shifts during illumination. Photochemical production of hydrogen ion is significant, in that chemiosmotic proton gradients across membranes are used by all contemporary cells as a source of energy for ATP synthesis and nutrient transport. To test whether the protons could be used to transduce light energy into a useful form, PAH derivatives were included in lipid bilayer membranes (liposomes). Upon illumination, protons (or acidic products) were produced and accumulated inside the vesicles, so that substantial pH gradients were established across the membranes, acid inside. We conclude that PAH dissolved in aliphatic hydrocarbons absorb light energy and use it to oxidize the hydrocarbon to long-chain amphiphilic molecules. The oxidation is accompanied by release of protons. If PAH derivatives are included in the bilayer membrane of lipid vesicles, protons accumulate within the membrane-bounded volumes to form proton gradients. This system provides a useful model of a primitive photochemical reaction in which light energy is transduced into potentially useable forms. 相似文献
18.
Material balance and diet in bioregenerative life support systems: connection with coefficient of closure. 总被引:1,自引:0,他引:1
N S Manukovsky V S Kovalev L A Somova Yu L Gurevich M G Sadovsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(9):1563-1569
Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive. 相似文献
19.
K Mori H Ohya K Matsumoto H Furune 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1987,7(4):47-52
The bioreactor with sunlight supply system and gas exchange systems presented here has proved feasible in ground tests and shows much promise for space use as a CELSS device. Our chief conclusions concerning the specification of total system needed for a life support system for a man in a space station are the following. (1) Sunlight supply system: compactness and low electrical consumption. (2) Bioreactor system: high density and growth rate of chlorella. (3) Gas exchange system: enough for O2 production and CO2 assimilation. 相似文献
20.
J L Garland 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):383-386
Strategies to control the microbial community associated with plant growth systems need to be based on a fundamental understanding of the factors which structure and regulate the community. Spatial and temporal patterns in the abundance and production rate of microorganisms in hydroponic systems containing wheat were examined to evaluate how root-derived carbon is processed. The relevance of results to monitoring and control strategies is discussed. 相似文献