首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of massive stars   总被引:1,自引:0,他引:1  
The evolution of stars with masses between 15 M 0 and 100M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution.The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities.Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15M 0 and a 25M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed.The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface.The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed.The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined.Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss.  相似文献   

2.
We are making precise determinations of the abundance of the light isotope of helium, 3He. The 3He abundance in Milky Way sources impacts stellar evolution, chemical evolution, and cosmology. The abundance of 3He is derived from measurements of the hyperfine transition of 3He+ which has a rest wavelength of 3.46 cm (8.665 GHz). As with all the light elements, the present interstellar 3He abundance results from a combination of Big Bang Nucleosynthesis (BBNS) and stellar nucleosynthesis. We are measuring the 3He abundance in Milky Way H ii regions and planetary nebulae (PNe). The source sample is currently comprised of 60 H ii regions and 12 PNe. H ii regions are examples of zero-age objects that are young relative to the age of the Galaxy. Therefore their abundances chronicle the results of billions of years of Galactic chemical evolution. PNe probe material that has been ejected from low-mass (M≤ 2M ) to intermediate-mass (M∼2–5M ) stars to be further processed by future stellar generations. Because the Milky Way ISM is optically thin at centimeter wavelengths, our source sample probes a larger volume of the Galactic disk than does any other light element tracer of Galactic chemical evolution. The sources in our sample possess a wide range of physical properties (including object type, size, temperature, excitation, etc.). The 3He abundances we derive have led to what has been called “The 3He Problem”.  相似文献   

3.
We present quantitative spectroscopic NLTE analyses of the components of well detached early type binaries (DH Cep, Y Cyg, V453 Cyg, and CW Cep). The position of the stars in the logL-logT eff diagram is discussed. We find significantly higher temperatures for the components of Y Cygni from spectral analysis by means of unblanketed NLTE model photospheres than those given by the orbit analysis. Therefore the comparison with evolutionary tracks yields larger masses. The spectroscopic temperatures of V453 Cygni and CW Cephei agree with the orbit data, but the evolutionary tracks point to larger masses also. However, if we account for some 2000K lower effective temperatures due to line blanketing, the luminosities, temperatures and masses of all stellar components are in good agreement, except for the case of DH Cep.  相似文献   

4.
We describe work that has recently been completed on deriving the fundamental parameters of eight WR stars through the photoionization modelling of their surrounding nebulae using non-LTE WR flux distributions. The resulting effective temperatures range from 57 000–71 000 K for the WN4-5 stars and <30 000–42 000 K for the WN6-8 stars. The derived stellar parameters are compared with those obtained from stellar emission line modelling. We find good agreement for the hot early WN stars, indicating that the non-LTE WR flux distributions have essentially the correct shape in the crucial far-UV region. We find lower temperatures for the four cooler late WN stars, particularly for the two WN6 stars. For the nebulae surrounding these stars, we find that the model flux distributions produce too much nebular ionization. We suggest that these discrepancies arise because of the lack of line-blanketing in the WR atmospheres. For the WO1 central star of G2.4+1.4, with strong nebular He II 4686 A emission, we derive a temperature of 105 000 K, somewhat less than previous estimates. The positions of our eight WR stars on the H-R diagram are compared with the evolutionary tracks of Maeder (1990) for solar metallicity. In common with previous workers, we find that our derived luminosities are too low, giving an initial mass range of 25–40 M, below that expected for the majority of WR stars.  相似文献   

5.
A theoretical counterpart to the Barnes-Evans relation between stellar surface brightness and V-R color has been calculated from model atmospheres for parameters appropriate to RR Lyrae stars. Such a relation can be used to derive stellar angular diameters from V,R photometry and, when applied to variable stars and combined with a radial velocity curve, to derive radii, distances, and absolute magnitudes by the method of Barnes et al. (1977, MNRAS,178, 661). This was done for RR Lyr and X Ari using the photometry of Moffett and Barnes (1980, private communication) and radial velocities from the literature. The resulting absolute magnitudes are Mv = ± 0.59 + 0.25 for X Ari and Mv = 0.61 ± 0.35 for RR Lyr. The method is shown to be a very accurate way of determining radii, distances, and absolute magnitudes for RR Lyrae stars which compares very favorably to the variations of the Baade-Wesselink technique currently in use.  相似文献   

6.
Counts of hot and luminous stars in a number of associations in the Galaxy and Magellanic Clouds enable one to directly investigate the numbers and types of massive stars. There seems to be little, if any, dependence of the slope of the Intial Mass Function, or theM upper on the initial composition of the stars. Indirect estimates of numbers of massive stars in various more distant environments are reviewed and discussed within a framework of acalibration of the methods using the stellar census of 30 Doradus. Very young starbursts, containing large numbers of massive stars, seem to be composed of smaller sub-units similar or somewhat larger than that object. These units might be newly born globular clusters.  相似文献   

7.
The high temperature sensitivity of thermonuclear reactions and the neurrino emission at the final stages of stellar evolution (urca process) are the most crucial Gamow's contribution to the physics and evolution of stars. G. Gamow made one of a few first attempts in astrophysics to get a comprehensive picture of stellar evolution from the main sequence (thenormal stars in his terminology) through the formation of white dwarfs, gravitational collapse of stellar cores and supernova explosions.  相似文献   

8.
The galactic cosmic rays arriving near Earth, which include both stable and long-lived nuclides from throughout the periodic table, consist of a mix of stellar nucleosynthesis products accelerated by shocks in the interstellar medium (ISM) and fragmentation products made by high-energy collisions during propagation through the ISM. Through the study of the composition and spectra of a variety of elements and isotopes in this diverse sample, models have been developed for the origin, acceleration, and transport of galactic cosmic rays. We present an overview of the current understanding of these topics emphasizing the insights that have been gained through investigations in the charge and energy ranges Z≲30 and E/M≲1 GeV/nuc, and particularly those using data obtained from the Cosmic Ray Isotope Spectrometer on NASA’s Advanced Composition Explorer mission.  相似文献   

9.
Conclusions My aim in this presentation has been to begin the confrontation between models for soft X-ray emission from low-luminosity galactic X-ray sources and currently available data. I have focussed principally on disk population stars, irrespective of spectral type, luminosity class, and age; and have used predictions of source temperatures and variability to distinguish between the various models. Although much remains to be done, I believe it is already possible to state that the X-ray emission characteristics of late and early spectral types, and young and old stars share many similarities, and that an economical explanation is that we are seeing the manifestations of solar coronal surface activity modulated by the stellar parameters which govern stellar magnetic activity (for example, rotation). In some cases (such as for OB stars), a proper theory accounting for the heating of such coronal plasma does not yet exist, but I am confident that the theorists will be up to this challenge.  相似文献   

10.
The ultraviolet spectral images of thousands of faint stars, up to the 13th mag., in the wavelength region of 2000–5000 Å are obtained by means of the space astrophysical observatory Orion-2 aboard the spaceship Soyuz-13. These spectrograms were designed generally for an investigation of the continuous spectra of the stars in ultraviolet. The processing and measurement of part of the material available confirm the expectations for the solution of a large number of problems concerning the physics of stars and stellar atmospheres. Some of the results obtained are included in the present review. Particularly, the observed distribution of continuous energy in the ultraviolet of normal hot stars is in line, according to Orion-2 data, with theoretical prediction; the existence of a new type of high temperature (> 20000K) and low absolute luminosity stars is noticed; the blocking effect of the ultraviolet absorption lines expected for the A-type stars is confirmed; a number of empirical regularities concerning the behaviour of the ultraviolet doublet of ionized magnesium, 2800 Mg ii, in the stellar spectra are derived; the chromosphere in cold stars is detected; the role of a multiplet of ionized titanium, 3080 Ti ii, in stellar spectra is revealed; probably an abnormal silicon-rich stellar envelope around a Be-type star is discovered; a new method for the spectral classification of the stars by their ultraviolet spectral images is developed; a range of interesting facts relating to the structure of the ultraviolet spectra of middle type stars (F-K) come to the fore; an exceptional ultraviolet spectrogram for the planetary nebula II 2149 and its nuclei is obtained; the blocking effect of emission lines in the spectrum of the B-type emission and normal O-type stars has been detected; a remarkably faint (12itm.6) and high temperature star (No. 1) of strange spectral structure has been discovered.  相似文献   

11.
VX-Sagittarii is a red supergiant with a superwind which is observed in several maser lines. They provide an evidence that the outflow velocity keeps growing considerably at large distance from the star. It is argued that this phenomenon can be explained by stellar evolutionary effects.As a rule, the outflow velocity for late type stars correlates with the mass loss rate and from that it is suggested that the mass loss rate was higher in the past and is decreasing now. The mass of VX Sagittarii can be estimated on this basis and is about 40–50M   相似文献   

12.
The stellar Initial Mass Function (IMF) suggests that stars with sub-solar mass form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre–main-sequence (PMS) evolutionary phase, i.e., they have not started their lives on the main-sequence yet. The peculiar nature of these objects and the contamination of their samples by the fore- and background evolved populations of the Galactic disk impose demanding observational techniques, such as X-ray surveying and optical spectroscopy of large samples for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the metal-poor companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of the above techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope within the last five years yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of star-forming regions in these galaxies, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of the PMS stellar content of the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the Magellanic Clouds allowed thus a more comprehensive understanding of the star formation process in our neighboring galaxies.  相似文献   

13.
New ultraviolet (1300 A, 3400 A),HST FOC observations have been used to derive the UV color-magnitude diagram (CMD) of R136, with the main scientific goal of studying the upper end of the stellar mass function at ultraviolet wavelengths where the color degeneracy encountered in visual CMDs is less severe. The CMD has been compared to a set of theoretical isochrones, which have been computed using the latest generation of evolutionary models and model atmospheres for early type stars. Wolf-Rayet stars are included. Comparison of theTheoretical andobserved CMD suggests that there are no stars brighter than M130–11. We use the observed main sequence turn-off and the known spectroscopic properties of the stellar population to derive constraints on the most probable age of R136. The presence of WNL stars and the lack of red supergiants suggests a most likely age of 3±1 Myr. A theoretical isochrone of 3±1 Myr is consistent with the observed stellar content of R136 if the most massive stars have initial masses around 50 M.Bases on Observations with the NASA/ESA Hubble Space Telescope, obtained at the STScI, which is operated by AURA, Inc., under NASA contract NAS5-26555.Astrophysics Division, Space Science Department, ESA  相似文献   

14.
A model for massive main sequence (MS) stars is proposed that quantitatively accounts for the mass and helium discrepancies in luminous OB stars. The radiative envelope of the model consists of two zones being mixed by rotationally induced turbulent diffusion during the star's evolution on the MS. The rate of the mixing in the outer zone is assumed to be substantially lower than that in the inner zone. Both, the mass and helium discrepancy, are shown to be due to helium enrichment in the envelope produced by turbulent diffusion. Some arguments to support this double-zone stellar model are given.Alexander von Humboldt Fellow  相似文献   

15.
The fundamental properties of 24 Galactic WN stars are determined from analyses of their optical, UV and IR spectra using sophisticated model atmosphere codes (Hillier, 1987, 1990). Terminal velocities, stellar luminosities, temperatures, mass loss rates and abundances of hydrogen, helium, carbon, nitrogen and oxygen are determined. Stellar parameters are derived using diagnostic lines and interstellar reddenings found from fitting theoretical continua to observed energy distributions.Our results confirm that the parameters of WN stars span a large range in temperature (T*=30–90,000 K), luminosity (log L*/L=4.8–5.9), mass loss (M=0.9–12×10–5 M yr–1) and terminal velocity (v =630–3300 km s–1). Hydrogen abundances are determined, and found to be low in WNEw and WNEs stars (<15% by mass) and considerable in most WNL stars (1–50%). Metal abundances are also determined with the nitrogen content found to lie in the range N/He=1–5×10–3 (by number) for all subtypes, and C/N 0.02 in broad agreement with the predictions of Maeder (1991). Enhanced O/N and O/C is found for HD 104994 (WN3p) suggesting a peculiar evolutionary history. Our results suggest that single WNL+abs stars may represent an evolutionary stage immediately after the Of phase. Since some WNE stars exist with non-negligible hydrogen contents (e.g. WR136) evolution may proceed directly from WNL+abs to WNE in some cases, circumventing the luminous blue variable (LBV) or red supergiant (RSG) stage.  相似文献   

16.
Massive stars are crucial building blocks of galaxies and the universe, as production sites of heavy elements and as stirring agents and energy providers through stellar winds and supernovae. The field of magnetic massive stars has seen tremendous progress in recent years. Different perspectives—ranging from direct field measurements over dynamo theory and stellar evolution to colliding winds and the stellar environment—fruitfully combine into a most interesting and still evolving overall picture, which we attempt to review here. Zeeman signatures leave no doubt that at least some O- and early B-type stars have a surface magnetic field. Indirect evidence, especially non-thermal radio emission from colliding winds, suggests many more. The emerging picture for massive stars shows similarities with results from intermediate mass stars, for which much more data are available. Observations are often compatible with a dipole or low order multi-pole field of about 1 kG (O-stars) or 300 G to 30?kG (Ap/Bp stars). Weak and unordered fields have been detected in the O-star ζ Ori A and in Vega, the first normal A-type star with a magnetic field. Theory offers essentially two explanations for the origin of the observed surface fields: fossil fields, particularly for strong and ordered fields, or different dynamo mechanisms, preferentially for less ordered fields. Numerical simulations yield the first concrete stable (fossil) field configuration, but give contradictory results as to whether dynamo action in the radiative envelope of massive main sequence stars is possible. Internal magnetic fields, which may not even show up at the stellar surface, affect stellar evolution as they lead to a more uniform rotation, with more slowly rotating cores and faster surface rotation. Surface metallicities may become enhanced, thus affecting the mass-loss rates.  相似文献   

17.
Bump masses and radii are derived for 18 BL Her stars from the observed bump phase and the accurately known fundamental period. The mean mass M/M = 0.60 ± 0.09 agrees precisely with predictions from standard stellar evolution theory and gives a new test of the theoretical models. The derived radius of V553 Centauri is in good agreement with the radius recently determined by an independent modified Baade-Wesselink method by Balona. Finally, a preliminary discussion of possible continuations of the BL Her bump progression is given.  相似文献   

18.
魏诗卉  杨春伟  刘炳琪  王继平  苏国华 《航空学报》2020,41(8):623734-623734
针对星光折射模型本身固有的缺点,对星光折射连续修正方法进行了研究,该方法首先探索折射星的分布规律,而后采用Unscented卡尔曼滤波算法+多星连续观测的方案实现定位。同时,对可用星与选星要素和基于突防规划的星光制导弹道设计两方面进行了研究,在星光制导制约机理研究的基础上,提出了惯性/星光制导规划方法,该方法包括导航星的优选策略、导航星优选技术和星点位置的精确计算3步。最后,介绍了星光制导系统的系统组成和功能原理。  相似文献   

19.
Studies of element abundances in stars are of fundamental interest for their impact in a wide astrophysical context, from our understanding of galactic chemistry and its evolution, to their effect on models of stellar interiors, to the influence of the composition of material in young stellar environments on the planet formation process. We review recent results of studies of abundance properties of X-ray emitting plasmas in stars, ranging from the corona of the Sun and other solar-like stars, to pre-main sequence low-mass stars, and to early-type stars. We discuss the status of our understanding of abundance patterns in stellar X-ray plasmas, and recent advances made possible by accurate diagnostics now accessible thanks to the high resolution X-ray spectroscopy with Chandra and XMM-Newton.  相似文献   

20.
Observations indicating the presence of stellar chromospheres, that is hot envelopes around stars are summarized. Undisputed indicators (called type I) for hot stellar envelopes are spectral lines of highly ionized atoms, Fe ii emission lines and flares in late type stars and the presence of the He i10830 Å line. Whether indicators (called type II) like emission cores in the Ca ii H and K and Mg ii h and k lines or mass loss signify the presence of stellar chromospheres is still somewhat debated, although the discussion points in favour of the usefulness of these indicators. The combined evidence to date shows that all non degenerate type stars have chromospheres except possibly the A stars. There are however theoretical reasons for expecting chromospheres in A stars. Empirical chromosphere models for a rapidly growing sample of stars have recently been constructed on the basis of Ca ii and Mg ii line observations. A discussion of possible heating mechanisms is given and the relative importance of these mechanisms is evaluated. For the low and middle chromosphere the short period acoustic heating mechanism seems to be the dominant process although there are still uncertainties. Both steady state and time dependent theoretical models of stellar chromospheres, based on the short period acoustic heating theory, are discussed, and predictions of these models are compared with results from empirical models. This relatively favourable comparison shows that the explanation of the Wilson-Bappu effect might be at hand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号