首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experimental measurements of the neutron flux and energy spectrum in space since 1964 are reviewed and related to the theoretical predictions. A discussion of the neutron sources is presented. The difficulties associated with neutron measurements of both the atmospheric neutron leakage flux and solar neutrons are included. Particular emphasis is placed upon the neutron leakage flux and energy measurements at energies greater than about 1 MeV. The possibilities of CRAND as a source for the energetic trapped protons are discussed in light of recent measurements of the 10–100 MeV neutron flux. The current status of the solar neutron flux observations is also presented.The primary purposes of neutron measurements in space have been to determine the neutron leakage flux from the atmosphere of the Earth and the solar neutron flux. As a consequence of the inefficient methods for neutron detection and the difficulties of conducting the measurements in the presence of the galactic and solar cosmic-ray backgrounds, the experimental results are very conflicting. It is the purpose of this review to interpret and discuss recent neutron measurements. In order to understand these results the theoretical predictions of the neutron fluxes and energy spectra from possible neutron sources will be briefly presented. Since comparisons of the different neutron measurements depend critically upon the experimental techniques, we will briefly discuss neutron detection methods applicable to space measurements. The emphasis will be upon measurements since 1964 made outside the Earth's atmosphere, but considerable reference will be made to high energy neutron experiments conducted within the Earth's atmosphere at < 10g cm-2 altitude. A review of earlier neutron measurements of terrestrial and solar neutrons has been made by Haymes (1965).  相似文献   

2.
A newly formed neutron star in a supernova finds itself in a dense environment, in which the gravitational energy of accreting matter can be lost to neutrinos. For the conditions in SN 1987A, 0.1M may have fallen back onto the central neutron star on a timescale of hours after the explosion, after which the accretion rate is expected to drop sharply. Radiation is trapped in the flow until the mass accretion rate drops to 2×10–4 M yr–1 at which point radiation can begin to escape from the shocked envelope at an Eddington limit luminosity. Between this neutrino limit and the Eddington limit, 3×10–8 M yr–1, there are no steady, spherical solutions for neutron star accretion. SN 1987A should have reached the neutrino limit within a year of the explosion; the current lack of an Eddington luminosity can be attributed to black hole formation or to a clearing of the neutron star envelope. There is no evidence for newly formed neutron stars in supernovae. Radio supernovae, which were initially interpreted as pulsar activity, probably involve circumstellar interaction; SN 1993J shows especially good evidence for outer shock phenomena.  相似文献   

3.
Duldig  Marc L. 《Space Science Reviews》2000,93(1-2):207-226
Muon observations are complementary to neutron monitor observations but there are some important differences in the two techniques. Unlike neutron monitors, muon telescope systems use coincidence techniques to obtain directional information about the arriving particle. Neutron monitor observations require simple corrections for pressure variations to compensate for the varying mass of atmospheric absorber over a site. In contrast, muon observations require additional corrections for the positive and negative temperature effects. Muon observations commenced many years before neutron monitors were constructed. Thus, muon data over a larger number of solar cycles is available to study solar modulation on anisotropies and other cosmic ray variations. The solar diurnal and semi-diurnal variations have been studied for many years. Using the techniques of Bieber and Chen it has been possible to derive the radial gradient, parallel mean-free path and symmetric latitude gradient of cosmic rays for rigidities <200 GV. The radial gradient varies with the 11-year solar activity cycle whereas the parallel mean-free path appears to vary with the 22-year solar magnetic cycle. The symmetric latitudinal gradient reverses at each solar polarity reversal. These results are in general agreement with predictions from modulation models. In undertaking these analyses the ratio of the parallel to perpendicular mean-free path must be assumed. There is strong contention in the literature about the correct value to employ but the results are sufficiently robust for this to be, at most, a minor problem. An asymmetric latitude gradient of highly variable nature has been found. These observations do not support current modulation models. Our view of the sidereal variation has undergone a revolution in recent times. Nagashima, Fujimoto and Jacklyn proposed a narrow Tail-In source anisotropy and separate Loss-Cone anisotropy as being responsible for the observed variations. A new analysis technique, more amenable to such structures, was developed by Japanese and Australian researchers. They confirmed the existence of the two anisotropies. However, they found that the Tail-In anisotropy is asymmetric and that both anisotropies had different positions from the prediction. Most 27-day modulations are observed at neutron monitor rigidities but not so readily at higher rigidities. An exception to this is the Isotropic Intensity Wave modulation observed in the early 1980s and again in 1991. This modulation is very strongly related to the heliospheric sector structure and implies a significantly different cosmic ray density on either side of the neutral sheet. The interpretation of most cosmic ray modulation phenomena requires good latitude coverage in both hemispheres. The closure of many muon observatories is a matter of concern. In the northern hemisphere a few new instruments are being constructed and spatial coverage is barely adequate. In the southern hemisphere the situation is far worse with the possibility that within a decade only the Mawson observatory in Antarctica will still be in operation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
It is commonly accepted that candidates for very high energy -ray sources are neutron stars, binary systems, black holes etc. Close binary systems containing a normal hot star and a neutron star (or a black hole) form an important class of very high energy -ray sources. Such systems are variable in any region of the electromagnetic spectrum and they enable us to study various stages of stellar evolution, accretion processes, mechanisms of particle acceleration, etc. Phenomena connected with this class of very high energy -ray sources are discussed. Particular emphasis has been placed on the TeV energy region.  相似文献   

5.
Clem  John M.  Dorman  Lev I. 《Space Science Reviews》2000,93(1-2):335-359
The neutron monitor provides continuous ground-based recording of the hadronic component in atmospheric secondary radiation which is related to primary cosmic rays. Simpson (1948) discovered that the latitude variation of the secondary hadronic component was considerably larger than the muon component suggesting the response of a neutron monitor is more sensitive to lower energies in the primary spectrum. The different methods of determining the neutron monitor response function of primary cosmic rays are reviewed and discussed including early and recent results. The authors also provide results from a new calculation (Clem, 1999) including angle dependent yield functions for different neutron monitor types which are calculated using a simulation of cosmic ray air showers combined with a detection efficiency simulation for different secondary particle species. Results are shown for IGY and NM64 configurations using the standard 10BF3 detectors and the new 3He detectors to be used in the Spaceship Earth Project (Bieber et al., 1995). The method of calculation is described in detail and the results are compared with measurements and previous calculations. A summary of future goals is discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
In this brief review, we summarize the current state of knowledge of solar energetic particles. This includes energetic particles contained within the site of solar flares that are responsible for X-ray, γ-ray and neutron emission and particles accelerated at high coronal altitudes and in interplanetary space by travelling disturbances such as coronal mass ejections. Special emphasis is placed on those particles directly or indirectly associated with neutron monitor signals. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
概述了近年探则快中子的新技术,它们分别是:抑制γ射线、热中子和带电粒子的符合谱仪;高分辨、宽能量范围(0.1~15.0MeV)带正比计数器的3He夹心谱仪;含氢的纤维闪烁作用于抑制γ射线、中子位置分布和中子能谱测量,及合锂的纤维玻璃闪烁体用于长中子计数器测平均中子能量;中子的直接探测;用于中高能和重离子核物理的多元件阵列快中子探测器和极化仪;用于核核查的中子源影像探测器;高入射氚核能量和高能中子的伴随粒子技术等七个方面。它们对中子计量学的发展是重要的。  相似文献   

8.
We see neutron stars principally by their radio and X-ray emission. Their appearance in these different bands depends on whether the emission comes from the surface or its magnetosphere. New phenomena continue to be found from neutron stars, which makes it an exciting and topical research area. This volume is a collection of the papers from a NATO Advanced Study Institute held in Italy in October 1996. Many, and for me the most interesting ones, are substantial reviews on topics such as Pulsar magnetic fields and glitches (M. Ruderman), Radio pulsar population properties (D. Lorimer), Gamma-ray emission from CGRO pulsars (G. Kanbach), Neutron stars and black holes in X-ray binaries (J. van Paradijs), Kilohertz quasi-periodic oscillations in low-mass X-ray binaries (M. van der Klis), Thermonuclear burning on rapidly accreting neutron stars (L. Bildsten), On the X-ray emission properties of rotation powered pulsars (W. Becker and J. Truemper). It will serve as a useful reference and source book for students in high energy astrophysics and related fields. The high price may deter its purchase by individuals, but it will be a good volume for a library needing recent coverage on neutron stars. It does not of course include the most recent developments on anomalous X-ray pulsars or magnetars. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Progress toward application of the large eddy simulation (LES) technique to turbulent multiphase combustion processes is presented with emphasis placed on propulsion and power systems. The primary objective is to provide a systematic analysis of the current state-of-the-art and assist in the development of technical performance metrics for model development and validation. Research is currently required to provide both improved multiphase combustion models and improved datasets for validation. Requirements for further model development must be established through detailed analyses of the space–time characteristics of small-scale flame structures and turbulence–chemistry interactions. Concurrently, a refined set of implementation requirements must be established. Steps taken towards these goals are described by first providing a generalized formulation of the filtered conservation equations using an arbitrary filter function that operates on both spatial and temporal scales, with no a priori assumptions made regarding the character of the multiphase fluid elements present in the system. The distinct requirements for LES are listed with a discussion that highlights current progress and unresolved issues. Two case studies are then presented that demonstrate the predictive capabilities of LES when implemented with the appropriate numerics and grid resolution, under highly controlled conditions, and with well-defined boundary conditions. The paper is concluded by highlighting recent findings associated with the International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames.  相似文献   

10.
The current status of the theory of a new astrophysical phenomenon, aradiation-driven diskon, is outlined.The cyclotron radiation pressure around sufficiently hot, strongly magnetized white dwarfs and neutron stars is shown to be able to drive a wind from the photosphere and support a plasma envelope in the closed part of the magnetosphere. The magnetohydrostatic configuration of an optically thin, radiatively supported plasma envelope is determined. It consists of an equatorial disk in the region where the cyclotron radiation force exceeds the local force of gravity and a closed shell near the equilibrium surface where the radiation pressure equals gravity. The effects of finite optical depth on the behaviour of the magnetospheric plasma and the influence of the envelope on the observed radiation are discussed.Classes of magnetic degenerate stars are pointed out in which radiation-driven diskons may be found. The best candidates are two individual stars, the strongly magnetized white dwarfs GD 229 and PG 1031+234. Both exhibit broad and deep depressions in the ultraviolet which are explained as a result of cyclotron scattering by an optically thick radiation-driven envelope in the inhomogeneous magnetic field of the star. We predict a temporal and spectral variability of these features due to non-stationary plasma motions in the envelope.  相似文献   

11.
Surface thermal emission has been detected byROSAT from four nearby young neutron stars. Assuming black body emission, the significant pulsations of the observed light curves can be interpreted as due to large surface temperature differences produced by the effect of the crustal magnetic field on the flow of heat from the hot interior toward the cooler surface. However, the energy dependence of the modulation observed in Geminga is incompatible with blackbody emission: this effect will give us a strong constraint on models of the neutron star surface.  相似文献   

12.
The Solar Dynamo     
Observations relevant to current models of the solar dynamo are presented, with emphasis on the history of solar magnetic activity and on the location and nature of the solar tachocline. The problems encountered when direct numerical simulation is used to analyse the solar cycle are discussed, and recent progress is reviewed. Mean field dynamo theory is still the basis of most theories of the solar dynamo, so a discussion of its fundamental principles and its underlying assumptions is given. The role of magnetic helicity is discussed. Some of the most popular models based on mean field theory are reviewed briefly. Dynamo models based on severe truncations of the full MHD equations are discussed.  相似文献   

13.
A wide class of galactic X-ray sources are believed to be binary systems where mass is flowing from a normal star to a companion that is a compact object, such as a neutron star. The strong magnetic fields of the compact object create a magnetosphere around it. We review the theoretical models developed to describe the properties of magnetospheres in such accreting binary systems. The size of the magnetosphere can be estimated from pressure balance arguments and is found to be small compared to the over-all size of the accretion region but large compared to the compact object if the latter is a neutron star. In the early models the magnetosphere was assumed to have open funnels in the polar regions, through which accreting plasma could pour in. Later, magnetically closed models were developed, with plasma entry made possible by instabilities at the magnetosphere boundary. The theory of plasma flow inside the magnetosphere has been formulated in analogy to a stellar wind with reversed flow; a complicating factor is the instability of the Alfvén critical point for inflow. In the case of accretion via a well-defined disk, new problems of magnetospheric structure appear, in particular the question to what extent and by what process the magnetic fields from the compact object can penetrate into the accretion disk. Since the X-ray emission is powered by the gravitational energy released in the accretion process, mass transfer into the magnetosphere is of fundamental importance; the various proposed mechanisms are critically examined.Proceedings of the NASA/JPL Workshop on the Physics of Planetary and Astrophysical Magnetospheres.  相似文献   

14.
Pyle  Roger 《Space Science Reviews》2000,93(1-2):381-400
Over the last few years, great strides have been made in providing access to data, both archival and near-real-time, for researchers throughout the field of Space Science. Neutron monitor data, in particular, has for many decades enjoyed a unique history of world-wide collaborative efforts and the unrestricted sharing of datasets among researchers. This is in large part due to the nature of the measurements made by neutron monitors; an understanding of the time-varying, anisotropic galactic or solar cosmic ray spectrum in most cases requires that data from a large array of stations needs to be considered, and often that array must be global in scope. This paper will attempt to summarize the current availability of neutron monitor data, by (a) describing the current status of archival data and near-real-time data access to neutron monitor data, and (b) looking into the future, with an emphasis on the use of the World Wide Web and other electronic means as the source mechanism. Public outreach efforts using active neutron monitors will also be discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The origin and evolution of Titan’s enigmatic atmosphere is reviewed. Starting with the present-day volatile inventory, the question of what was the original composition on Titan and how a satellite of similar size to other Galilean moons managed to acquire and hold on to the required material is discussed. In particular the possible sources and sinks of the main mother molecules (nitrogen, methane and oxygen) are investigated in view of the most recent models and laboratory experiments. The answers expected to be provided by the instruments aboard the Cassini-Huygens mission to some of the most prominent current questions regarding Titan’s atmosphere are defined.  相似文献   

16.
Wibberenz  G.  le Roux  J.A.  Potgieter  M.S.  Bieber  J.W. 《Space Science Reviews》1998,83(1-2):309-348
In the present phase of the solar cycle no big transients leading to strong modulation had been observed after 1991. Apart from a few minor disturbances cosmic rays were still recovering to a new intensity maximum. It was suggested, therefore, that existing literature from previous cycles should be critically reviewed. The scene was set by the introductory papers on— phenomenology of cosmic ray modulation in successive solar cycles throughout the heliosphere— the present state of models for long term modulation and their shortcomings— the relation between cosmic ray variations and the magnitude of the interplanetary magnetic field (the CR-B-relation)— charge dependent effects.In the discussions, the study of propagating diffusive disturbances and the CR-B-relation played a central role. The difference was stressed between isolated transient disturbances in the inner solar system (Forbush decreases), and the long lasting, step-like decreases caused by merged interaction regions in the outer heliosphere. The recovery rates following the step-like decreases vary with the phase in the 22-year solar cycle. In some cases this requires a modification of existing drift models. In the outer heliosphere, the CR-B-relation leads to the result 1/ between the diffusion coefficient and the field magnitude . This simple result is a challenge for theoreticians to derive the perpendicular diffusion coefficient fromfirst principles. The three articles in this report essentially follow the list of open points and arguments just presented.The article "Observations and Simple Models" is organised around the model of a propagating diffusive barrier, its application to Forbush effects in the inner heliosphere and to decreases caused by merged interaction regions in the outer heliosphere. Acomparison of observed Forbush decreases with model predictions requires a careful separation of the two steps related to the turbulent region behind the shock front and the closed magnetic field regions of the ejecta (the interplanetary counterparts of coronal mass ejections). It is shown that models for propagating disturbances can be used to derive values of the diffusion coefficients phenomenologically, not only during the disturbance, but also in the ambient medium.The "Modeling of Merged Interaction Regions" summarizes the dynamic and time-dependent process of cosmic ray modulation in the heliosphere. Numerical models with only a time-dependent neutral sheet prove to be successful when moderate to low solar activity occurs but fail to describe large and discrete steps in modulated cosmic rays when solar activity is high. To explain this feature of heliospheric modulation, the concept of global merged interaction regions is required. The com-bination of gradient, curvature and neutral sheet drifts with these global merged interaction regions has so far been the most successful approach in explaining the 11-year and 22-year cycles in the long-term modulation of cosmic rays.The "Remarks on the Diffusion Tensor in the Heliosphere" describe available theories of perpen-dicular diffusion and drift, and discuss their relevance to cosmic rays in the heliosphere. In addition, the information about diffusion coefficients and spatial gradients obtained from the analysis of steady state anisotropies at neutron monitor energies is summarized. These topics are intimately related to the other two articles. They are also part of the general discussion about the "Diffusion Tensor throughout the Heliosphere" which played an important role in all working groups.  相似文献   

17.
Massive stars, at least \(\sim10\) times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy.In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense “clumps”. The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution.Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations.This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.  相似文献   

18.
At the end of the sixties it became obvious that two-dimensional dynamo models can explain nearly all facts, which had been found morphologically for mean annual Sq-fields. During the recent decade new or improved methods to measure electric fields (e.g. incoherent scatter facilities) and to investigate great data files have been developed. New informations received with these methods about the existence of regular variations of the Sq-field in dependence on season and universal time and about the electric field have been summarized in Section 2. All attempts to describe also these variations with a two-dimensional dynamo model did not lead to any success, but showed a strong theoretical over-estimation of the asymmetries. Therefore, it must be concluded that three-dimensional plasmaspheric current systems, taking into consideration the coupling between both hemispheres along the high-conducting magnetic field lines, are needed in order to explain the regular variations of the Sq -field. The basic equations for two- and three-dimensional dynamo models, different methods for the solution of these equations and the resulting models from different authors are compiled and discussed (Section 3).Based on all morphological and theoretical results a plasmaspheric-ionospheric current system has been constructed and some properties of the plasmaspheric field-aligned current distribution, have been derived.  相似文献   

19.
Temporal and spectral characteristics of solar hard X-ray bursts are briefly reviewed. The merits of non-thermal and thermal flare models are discussed. The validity of these models may be checked by future measurements of X-ray polarization. Finally, some important results of recent satellite experiments are described providing information on the spatial distribution of hard X-ray sources: the multi-spacecraft observation of X-ray bursts and the imaging of X-ray sources by means of the HXIS instrument.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

20.
人工神经网络在飞行控制领域中的应用及发展   总被引:1,自引:0,他引:1  
综述了近年来人工神经网络在飞行控制领域中的应用研究概况。首先从人工神经网络的发展历史出发,介绍了在飞行控制系统中常用的神经网络及其研究现状;而后论述了与其它智能技术的结合与发展情况,并针对当前飞行控制领域所遇到的重点和难点问题,分析了人工神经网络的具体应用;最后指出了今后主要的工作方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号