首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 691 毫秒
1.
We evaluate the current status of supernova remnants as the sources of Galactic cosmic rays. We summarize observations of supernova remnants, covering the whole electromagnetic spectrum and describe what these observations tell us about the acceleration processes by high Mach number shock fronts. We discuss the shock modification by cosmic rays, the shape and maximum energy of the cosmic-ray spectrum and the total energy budget of cosmic rays in and surrounding supernova remnants. Additionally, we discuss problems with supernova remnants as main sources of Galactic cosmic rays, as well as alternative sources.  相似文献   

2.
Fisk  L. A.  Wenzel  K.-P.  Balogh  A.  Burger  R. A.  Cummings  A. C.  Evenson  P.  Heber  B.  Jokipii  J. R.  Krainev  M. B.  Kóta  J.  Kunow  H.  Le Roux  J. A.  McDonald  F. B.  McKibben  R. B.  Potgieter  M. S.  Simpson  J. A.  Steenberg  C. D.  Suess  S.  Webber  W. R.  Wibberenz  G.  Zhang  M.  Ferrando  P.  Fujii  Z.  Lockwood  J. A.  Moraal  H.  Stone  E. C. 《Space Science Reviews》1998,83(1-2):179-214
The global processes that determine cosmic ray modulation are reviewed. The essential elements of the theory which describes cosmic ray behavior in the heliosphere are summarized, and a series of discussions is presented which compare the expectations of this theory with observations of the spatial and temporal behavior of both galactic cosmic rays and the anomalous component; the behavior of cosmic ray electrons and ions; and the 26-day variations in cosmic rays as a function of heliographic latitude. The general conclusion is that the current theory is essentially correct. There is clear evidence, in solar minimum conditions, that the cosmic rays and the anomalous component behave as is expected from theory, with strong effects of gradient and curvature drifts. There is strong evidence of considerable latitude transport of the cosmic rays, at all energies, but the mechanism by which this occurs is unclear. Despite the apparent success of the theory, there is no single choice for the parameters which describe cosmic ray behavior, which can account for all of the observed temporal and spatial variations, spectra, and electron vs. ion behavior.  相似文献   

3.
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700–718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.  相似文献   

4.
Klecker  B.  Mewaldt  R.A.  Bieber  J.W.  Cummings  A.C.  Drury  L.  Giacalone  J.  Jokipii  J.R.  Jones  F.C.  Krainev  M.B.  Lee  M.A.  Le Roux  J.A.  Marsden  R.G.  Mcdonald  F.B.  McKibben  R.B.  Steenberg  C.D.  Baring  M.G.  Ellison  D.C.  Lanzerotti  L.J.  Leske  R.A.  Mazur  J.E.  Moraal  H.  Oetliker  M.  Ptuskin  V.S.  Selesnick  R.S.  Trattner  K.J. 《Space Science Reviews》1998,83(1-2):259-308
We review the observed properties of anomalous cosmic rays and the present status of our knowledge of the processes by which they originate. We compiled a comprehensive set of ACR energy spectral data from various spacecraft throughout the heliosphere during the passes of Ulysses over the poles of the Sun and present first results of a detailed modeling effort. In several contributions, we discuss the questions of injection and possible pre-acceleration of pickup ions, summarize new observations on the ionic charge composition, and present new results on the composition of minor ions in ACRs.  相似文献   

5.
The first observations of solar cosmic rays were made simultaneously by many investigators at worldwide cosmic-ray stations in the periods of powerful chromospheric flares on February 28 and March 7, 1942. The discovery of these and the investigation of cosmic-ray solar-daily variations with maximum time near noon led some authors (Richtmyer and Teller, 1948; Alfvén, 1949, 1950) to a model of apparent cosmic-ray solar origin. We present here the results of the properties of solar cosmic rays from ground events (experimental and theoretical investigations). We also discuss important information from solar experimental data relating to these ground events observed in September and October 1989 and May 1990. Some experimental evidence of acceleration processes in associated phenomena with flares and long-term (solar cycle) variation of the average flux of solar cosmic rays is discussed as also cornal and interplanetary propagation, and that in the terrestrial magnetosphere. Note that the energy spectrum of solar cosmic rays varied very strongly from one flare to another. What are the causes of these phenomena? What is the nature of chemical and isotopic contents of solar cosmic rays? How can its changes occur in the energy spectrum and chemical contents of solar cosmic rays in the process of propagation? Is it possible to recalculate these parameters to the source? What makes solar cosmic rays rich in heavy nucleus and3He? The important data about electrons, positrons, gamma-quanta and neutrons from flares will be discussed in a subsequent paper (Dorman and Venkatesan, 1992). The question is: What main acceleration mechanism of solar flare and associated phenomena are reliable? These problems are connected with the more general problem on solar flare origin and its energetics. In Dorman and Venkatesan (1993) we will consider these problems as well as the problem of prediction of radiation hazard from solar cosmic rays (not only in space, but also in the Earth's atmosphere too).  相似文献   

6.
Diffusive shock acceleration is the theory of particle acceleration through multiple shock crossings. In order for this process to proceed at a rate that can be reconciled with observations of high-energy electrons in the vicinity of the shock, and for cosmic rays protons to be accelerated to energies up to observed galactic values, significant magnetic field amplification is required. In this review we will discuss various theories on how magnetic field amplification can proceed in the presence of a cosmic ray population. On both short and long length scales, cosmic ray streaming can induce instabilities that act to amplify the magnetic field. Developments in this area that have occurred over the past decade are the main focus of this paper.  相似文献   

7.
The spectra of galactic cosmic rays that are observed inside the heliosphere result from the interaction of the spectra present in the local interstellar medium with the structured but turbulent magnetic field carried by the solar wind. Observational tests of solar modulation theory depend on comparisons between spectra inside and outside the heliosphere. Our knowledge of the local interstellar spectra are indirect, using extrapolations of interplanetary spectra measured at high energies where solar modulation effects are minimal and modeling of the physical processes that occur during particle acceleration and transport in the interstellar medium. The resulting estimates of the interstellar spectra can also be checked against observations of the effects that cosmic rays have on the chemistry of the interstellar medium and on the production of the diffuse galactic gamma-ray background. I review the present understanding of the local galactic cosmic-ray spectra, emphasizing the constraints set by observations and the uncertainties that remain.  相似文献   

8.
Simnett  G. M.  Kunow  H.  Flückiger  E.  Heber  B.  Horbury  T.  Kóta  J.  Lazarus  A.  Roelof  E. C.  Simpson  J. A.  Zhang  M.  Decker  R. B. 《Space Science Reviews》1998,83(1-2):215-258
The corotating particle events give us a unique opportunity to probe the three-dimensional structures of the heliosphere. This is especially true if we have observations over a period of extreme stability of the CIRs, such as existed over the recent solar minimum. We discuss how the observations fit into the context of current heliospheric magnetic field models. The energetic particle signatures of CIRs throughout the regions of the heliosphere covered by the deep-space missions are reviewed. The CIRs accelerate these particles and at the same time modulate both the high energy galactic cosmic rays and the anomalous cosmic rays.  相似文献   

9.
Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.  相似文献   

10.
We discuss the new information that the light elements, particularly Be, have brought to cosmic-ray studies, specifically to the issue of the origin of the seed material of the cosmic rays. The primary nature of the Be evolution strongly suggests that supernova ejecta are the sources of this material. We discuss the superbubble models that emerged as the most likely site for the acceleration of supernova ejecta, and we review the arguments that support the model in which the present epoch cosmic rays have the same origin as those that produce the light elements throughout the evolutionary history of the Galaxy. These arguments include the facts that the bulk of the Galactic supernovae are confined within the interiors of superbubbles, where their ejecta could dominate the metallicity, and that high velocity grains, which condense out of the cooling and expanding ejecta, serve as the injection source for shock acceleration, via sputtering of grain material and scattering of volatile gas atoms. We also review the evolutionary calculations that show that a secondary origin for the evolution of Be as a function of the O abundance is energetically untenable, and unnecessary if cosmic-ray transport is properly taken into account.  相似文献   

11.
We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and gamma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.  相似文献   

12.
We briefly review the available data on cosmic rays beyond the `knee, i.e., over the energy range from 1015 to more than 1020 eV. We discuss the observational status of the field, review some of the current attempts to explain the origin of these particles, and briefly survey the prospects of future measurements.  相似文献   

13.
Belov  Anatoly 《Space Science Reviews》2000,93(1-2):79-105
The current knowledge and ideas, obtained from groundlevel observations and concerning the solar modulation of cosmic rays, are reviewed. The following topics are discussed: observations of the cosmic ray modulation at the Earth and main characteristics of the accumulated experimental data; manifestations of the solar magnetic cycle in cosmic rays; the effect of hysteresis and its relation to the size of the heliosphere; the rigidity spectrum of long-term cosmic ray variations; the influence of the sporadic effects on long-term modulation; long-term variations of cosmic ray anisotropy and gradients; the place of groundlevel observations in current studies of cosmic ray modulation and their future prospects. Particular consideration is given to the correlation of long-term cosmic ray variations with different solar-heliospheric parameters, and to empirical models of cosmic ray modulation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
15.
Simnett  G.M. 《Space Science Reviews》2001,99(1-4):231-242
This article reviews observations on the large-scale distribution of various constituents of the interstellar medium. We subsequently discuss several theoretical issues related directly to Galactic cosmic rays: the Galactic hydrostatic equilibrium, the Parker instability of the Galactic disk, and the problem of the origin of the large-scale Galactic magnetic field.  相似文献   

16.
Kóta  J.  Jokipii  J.R. 《Space Science Reviews》1998,83(1-2):137-145
We present a brief review of the modeling of corotating 3-dimensional features in heliospheric cosmic rays. The model heliosphere incorporates a wavy current sheet and Corotating Interaction Regions (CIRs). We find that present models can qualitatively account for the observed extension of recurrent 26-day cosmic-ray variations to high heliospheric latitudes if perpendicular diffusion is significant. The recurrent enhancement of low-energy (MeV) particles accelerated at CIR-s is also shown to fit into this same picture.  相似文献   

17.
Kirkby  Jasper  Laaksonen  Ari 《Space Science Reviews》2000,94(1-2):397-409
Satellite observations have recently revealed a surprising imprint of the 11-year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how.  相似文献   

18.
Energetic particles in the heliosphere, from relatively low-energy particles which are accelerated in Corotating Interaction Regions (CIRs) to galactic cosmic rays, are observed to propagate relatively easily in heliographic latitude. Two mechanisms for this transport appear possible: cross-field diffusion, or, in a recent model for the heliospheric magnetic field, by direct magnetic connection. The commonalties and differences of these two mechanisms are considered, and the need for future observations and modeling efforts are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008–2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.  相似文献   

20.
The theory and observational evidence pertaining to particle acceleration by shock waves in astrophysical objects and in space are systematized. Recent works showing observational and theoretical aspects of the problem dealing with shocks in turbulent media are emphasized. The acceleration of particles by shocks in turbulent media is observed in interplanetary space. This acceleration mechanism is of particular interest from the point of view of the origin of cosmic rays, providing the degree form of the spectrum. The index of the spectrum is close to the observable one for galactic cosmic rays. It depends slightly on specific conditions in the acceleration region. Electron and nucleus acceleration in supernova remnants and in radiogalaxies is discussed, and theory and observational data are compared. The theory of particle acceleration by supersonic turbulence is outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号