首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
本文介绍了粉末涂料和粉末涂装技术的种类,以及该技术的国内外应用概况。 1 粉末涂料和粉末涂装技术粉末涂料是一种含有100%固体成分,以粉末状态进行涂装并形成涂层的涂料。它与一般溶剂型涂料和水性涂料不同,不是用溶剂或水作为分散媒介,而是借助空气作为媒介的。  相似文献   

2.
反应火焰喷涂Ti-Ni-C系陶瓷/金属复合涂层   总被引:3,自引:0,他引:3  
以钛粉、镍粉和碳的前驱体(蔗糖)为原料通过前驱体碳化复合技术制备了Ti-Ni-C系反应喷涂复合粉末,并通过普通氧乙炔火焰喷涂技术成功制备了以TiC为增强相的陶瓷/金属复合涂层.采用XRD和SEM对喷涂粉末和涂层的相组成和显微组织结构进行了分析.研究结果表明:采用前驱体碳化复合技术制备的Ti-Ni-C系复合喷涂粉末有非常紧密的结构;可有效的解决反应喷涂过程中原料粉末分离的问题;喷涂所得到的陶瓷/金属复合涂层具有典型的热喷涂组织特征,其由原位合成的纳米级TiC颗粒分布于金属基体内部形成的复合强化片层组织和TiC和Ti2O3共生聚集片层交替叠加而成;涂层基体以Ni和Ni3Ti形式存在.  相似文献   

3.
纳米结构热障涂层的制备与性能研究   总被引:4,自引:0,他引:4  
为充分发掘氧化锆(YSZ:ZrO2-6wt%Y2O3)基热障涂层的潜力,利用纳米级的YSZ粉末作为陶瓷涂层原材料,分别对采用等离子喷涂(APS)和电子束物理气相沉积(EB-PVD)沉积具有纳米结构陶瓷涂层的工艺过程进行全面研究.对比性试验结果表明,涂层中引入纳米结构使热障涂层具有更高的隔热效果,更高的硬度以及更高的抗剥落能力.并对纳米结构陶瓷涂层微观结构的高温稳定性进行研究分析.  相似文献   

4.
不同工艺粉末对超音速火焰喷涂WC-10Co-4Cr涂层性能的影响   总被引:1,自引:0,他引:1  
对比分析了采用烧结破碎和团聚烧结工艺制备的两种WC-10Co-4Cr粉末的物理性能和物相组成。采用超音速火焰喷涂技术对两种粉末进行了涂层制备,并对两种涂层的性能进行对比评价,结果表明:团聚烧结粉末制备涂层的硬度、孔隙率和抗冲蚀磨损性能均优于烧结破碎粉末制备涂层,但其结合强度略低于烧结破碎粉末制备涂层。  相似文献   

5.
采用高温固相法合成了Nd2CexO3+2x(x=2.0,2.25,2.5,2.75,3.0)复合氧化物,在高温合金基体上采用等离子喷涂制备了该材料热障涂层.XRD分析结果表明Nd2CexO3+2x粉末和涂层均为立方萤石晶体结构.考察了CeO2含量对Nd2CexO3+2x的力学性能(弹性模量、维氏硬度和断裂韧性)和等离子喷涂涂层在1250℃抗热震性能的影响.随着CeO2含量增加,材料的弹性模量降低,维氏硬度和断裂韧性提高.通过提高初始粉末中CeO2的含量,获得了组成接近化学计量比Nd2Ce2O7的涂层,涂层的抗热震性能增强,热循环次数达到1000次以上.Nd2CexO3+2x涂层的失效原因主要是:与金属基体之间热膨胀系数不匹配、粘结层氧化和涂层烧结.  相似文献   

6.
在45号钢表面,制备了WC/Co-NiCrAl等离子喷涂涂层(TC-1)和WC/Co-NiCrAl/laser-remelting激光直接重熔等离子喷涂陶瓷涂层(TC-2)。以纳米SiC粉末为填料,对等离子喷涂层TC-1进行了填料下的激光重熔,制备了纳米SiC改性的WC/Co-NiCrAl/nano-SiC复合陶瓷涂层(TC-3)。采用X射线衍射、扫描电镜对三种涂层微观组织进行了分析,同时对陶瓷涂层的耐腐蚀性能进行了研究。结果表明,TC-1涂层由WC,W2C,W6C2.54,W,Co,CoO组成;TC-2重熔涂层由WC,W2C,CoO及W组成;纳米改性后的重熔涂层TC-3由SiC,Si2W,WC,W及CoO组成。在激光作用下,原等离子喷涂层WC/Co的片层状组织得以消除。与TC-1涂层相比,TC-2及TC-3陶瓷涂层致密化程度明显提高,涂层耐腐蚀性能也得到了明显的改善。  相似文献   

7.
采用普通大气等离子喷涂(atmospheric plasma spraying,APS)和高能效超音速等离子喷涂(supersonic atmospheric plasma spraying,SAPS)分别沉积制备镍石墨可磨耗封严涂层,对比研究润滑相尺寸对涂层的力学性能、抗腐蚀性能以及抗冲蚀磨损性能的影响。结果表明:相较于APS涂层,SAPS沉积制备的涂层中石墨润滑相尺寸较小;SAPS涂层的结合强度(22.3±1.4)MPa和表面洛氏硬度(87±0.8)HR15Y比APS涂层分别高出22.5%和20.8%;APS涂层在30°攻角和90°攻角的相对冲蚀速率分别比SAPS涂层高出7%和13%,表明SAPS涂层抗冲蚀性能优于APS涂层;APS涂层和SAPS涂层在250℃的高温醋酸环境中均发生了明显的电化学腐蚀现象,但SAPS涂层的抗腐蚀性能优于APS涂层。  相似文献   

8.
采用料浆法和粉末包埋渗法在Ni3Al基等轴晶合金IC6AE上分别制备了Al-Si和NiCr-CrAl涂层,并对Al-Si和NiCr-CrAl涂层及不加涂层的IC6AE合金三种试样进行900℃/20h,40h,60h,80h,100h的涂盐(5wt%NaCl 95wt%Na2SO4)抗腐蚀性能试验.试验结果表明,与Al-Si涂层试样和无涂层IC6AE合金试样相比,NiCr-CrAl涂层试样表现出最好的抗热腐蚀性能;与无涂层的IC6AE合金试样相比,Al-Si涂层试样的抗腐蚀性没有明显的改善.微观结构分析表明,无涂层的IC6AE合金在900℃时经过几个小时后就遭到了严重的腐蚀破坏.涂盐腐蚀100h后,表面生成了一层主要由Mo,Ni的氧化物组成的多孔无保护性的疏松层.对于Al-Si涂层的试样,900℃/100h腐蚀后试样表面生成了大量Mo,Ni的氧化物,此外还有少量Al2O3及NiAl3相,这些相对样品有一定的保护作用.涂覆NiCr-CrAl涂层的样品经900℃/100h腐蚀后,试样表面主要生成了连续致密的Al2O3及NiAl2O4层,并有少量的Mo,Ni的氧化物,因此对合金有着较好的保护作用,抗腐蚀性能得到了显著改善.  相似文献   

9.
采用共沉淀-煅烧法制备了热障涂层用Dy2Zr2O7陶瓷粉末.通过电感耦合等离子体原子发射光谱(ICPAES)、X射线衍射,SEM,DSC及霍尔流速计等分析方法,对粉末的化学组成、相组成、微观结构、高温相稳定性和流动性能进行了研究.通过高温膨胀仪、DSC和激光热导仪分别测定其热膨胀系数、比热系数和导热系数.结果表明,所制备粉末的组成与锆酸镝氟石结构的组成相近;高温下Dy2Zr2O7无明显相变;在高于1400℃的温度下煅烧后,Dy2Zr2O7的流动性得到显著改善;Dy2Zr2O7具有比8YSZ更高的热膨胀系数和更低的导热系数.  相似文献   

10.
冷态输送ZrCl4低压化学气相沉积ZrC涂层的制备   总被引:1,自引:0,他引:1  
采用zrCl4-CH4-H2-Ar反应体系,冷态输送ZrCl4粉末化学气相沉积(CVD)制备ZrC涂层.采用热力学计算并结合实验结果分析了冷态输送ZrCl4化学气相沉积ZrC涂层的特点,采用X射线衍射仪和扫描电镜分析了涂层的物相组成、表面形貌和组织结构.结果表明:冷态输送ZrCl4粉末大幅度降低了ZrC的化学气相沉积温...  相似文献   

11.
李军  罗瑞盈  李强  毕燕洪 《航空学报》2007,28(6):1494-1498
 研究了一种工艺简单、成本低廉的飞机刹车盘用炭/炭复合材料防氧化复合涂层。该复合涂层由两层组成,其中内层由硼酸制备而成,外层由硼粉、炭化硼、氧化硅玻璃粉、有机硅树脂以及铝粉和铁粉制备成。恒温氧化和热震实验的结果表明:在700 ℃下空气中恒温氧化50 h后,带该涂层试样的氧化失重率只有0.08%,同时在700 ℃下空气中热循环50次后,试样的氧化失重率也只有0.12%。另外,用扫描电镜(SEM)、X射线能量分散谱(EDX)、Raman光谱和差热分析(DTA)等方法分析了涂层的防氧化机理。  相似文献   

12.
电弧离子镀Al扩散障结构及抗高温氧化性能研究   总被引:2,自引:0,他引:2  
采用电弧离子镀技术(AIP)在HY3(NiCrAlYSi)涂层与镍基高温合金(K5合金)之间沉积一层Al薄膜经过马弗炉870℃加热1h形成Al2O3作为扩散障层,研究了Al2O3对HY3(NiCrAlYSi)涂层与基体的元素互扩散的阻碍作用和对涂层氧化动力曲线的影响。对于添加扩散障层前后的试样,进行循环抗氧化试验来评价其抗高温氧化性能,并用扫描电镜(SEM)分析氧化前后试样微观形貌和成分,用X-射线衍射仪分析涂层的相结构。试验结果表明:Al2O3有效阻止基体与涂层之间的元素互扩散,提高了HY3(NiCrAlYSi)涂层和K5合金的抗高温氧化性能。  相似文献   

13.
以镍铝包氮化硼粉末为喷涂材料,采用大气等离子喷涂工艺制备高温封严涂层,以扫描电子显微镜(SEM)和X射线衍射仪(XRD)等方法分析、观察了涂层的组织及结构,测试了涂层的结合强度和表面洛氏硬度。结果表明:涂层呈典型的层状结构,由镍铝金属化合物、氮化硼多相组成,涂层与基体结合强度为10.57MPa,涂层表面洛氏硬度为74.8(HR15Y),涂层抗热震性能良好。  相似文献   

14.
以蔗糖为碳的前驱体、TiFe粉为原料制备Fe-Ti-C系反应热喷涂复合粉末,通过等离子喷涂沉积TiC/Fe金属陶瓷涂层,利用"淬熄试验"研究涂层组织形成机理.采用XRD和SEM分析喷涂粉末、涂层以及淬熄粒子的组织结构.结果表明:每个复合粉末团粒构成独立的反应单元,在喷涂飞行过程中首先出现Ti-Fe液相,然后整个团粒发生球化;熔化的团粒内部生成大量细小TiC颗粒,表层有少量TiC聚集,与基板碰撞后形成复合强化片层与TiC聚集片层交替叠加的涂层结构;随飞行距离增大,团粒外部TiC聚集层增厚,内部TiC颗粒减少,碰撞扁平化程度降低;最终涂层由TiC和Fe两相组成,大量亚微米级TiC颗粒呈内晶型均匀分布于Fe基体中.  相似文献   

15.
采用等离子喷涂纳米氧化锆(ZrO_2-8%Y_2O_3)团聚粉末制备了纳米氧化锆热障涂层,利用连续CO_2激光对其进行重熔处理.以常规热障涂层作为比较对象,研究了纳米氧化锆热障涂层和激光重熔涂层的组织结构、硬度、抗热冲击性能.结果表明:纳米氧化锆热障涂层组织结构为独特的纳米-微米复合结构,主要有柱状晶和未熔融或部分熔融纳米颗粒组成;激光重熔热障涂层的组织结构为表面等轴晶+断面柱状晶.硬度试验和抗热冲击性能试验综合比较结果显示:相对于常规氧化锆热障涂层,纳米氧化锆热障涂层和激光重熔热障涂层拥有更好的性能.因此将纳米技术和激光重熔表面处理技术与等离子喷涂技术结合起来制备热障涂层是提高热障涂层性能的非常有前景的工艺方法.  相似文献   

16.
C/C复合材料抗烧蚀HfC涂层的制备   总被引:1,自引:0,他引:1  
采用液相先驱体转化法在C/C复合材料表面制备了抗烧蚀HfC涂层.用红外光谱分析先驱体溶液的结构,用XRD、SEM和EDS对涂层进行了分析和表征.结果表明:先驱体溶液中主要存在Hf-O-Hf结构和Hf-O-C链式结构,有利于HfC涂层的形成;经过1800℃热处理后多层膜被转变为HfC涂层,形成的涂层中主要为HfC和HfO2;单次涂覆不能有效的覆盖C/C复合材料,多次涂覆能够生成致密的HfC涂层;涂层的厚度约为几十微米,涂层界面不明显,在涂层和基体间有较大过渡层能够缓解界面应力和提高与基体间的结合强度,有效延长寿命.  相似文献   

17.
激光熔覆制备WCp/Ni-Si-Ti复合涂层   总被引:1,自引:0,他引:1  
在Ni基高温合金表面预置3种不同WC含量的Ni78Si13Ti9(at%)粉末,采用激光熔覆制备了WC和原位自生TiC复相陶瓷增强Ni3(Si,Ti)基复合涂层.利用扫描电镜、能谱分析仪和X射线衍射仪对熔覆层组织进行分析,并测量了其显微硬度.结果表明,熔覆层与基体呈冶金结合,熔覆层组织主要由Ni(Si)固溶体、Ni3(Si,Ti)金属间化合物和WC-TiC复相陶瓷组成.随WC添加量增加,涂层中复相陶瓷含量增多;孔隙率增大;碳化物形态演变历程为不规则状、花瓣状以及不规则状和花瓣状共存.  相似文献   

18.
部科技局于一九八三年九月组织了由十四个单位代表组成的鉴定小组,对一八五厂、一一五厂联合研制的粉末喷涂工艺应用研究(包括材料、工艺、设备)成果进行了鉴定。在该项课题的研制过程中,两厂对粉末涂料进行了大量的性能试验,为粉末静电喷涂工  相似文献   

19.
广泛应用于航空发动机和地面燃气轮机中的热障涂层具有低热导率和良好的耐温性能,能够降低涡轮叶片表面温度,使高温结构件能在高于其熔点的环境中长时间高效率的服役。热障涂层的性能和寿命受到陶瓷层材料与其结构的直接影响,采用可控原料粉末对陶瓷涂层进行微观结构调节的方法可以减少涂层中的应变-应力失配,具有操作灵活、效果显著、调控范围广等优势。针对传统热障涂层应变容限低,抗热震性能不足等问题,本团队开发了静电喷雾技术结合相分离原理(ESP)制备新型热喷涂微球粉末的造粒理论和实现方法,实现了对粉末形貌结构的精确构筑,可用于制备核壳、均质和层级孔等全体系喷涂微球粉末。与传统的喷涂粉末相比,其中层级孔微球粉末(由特殊的纳米-微米层级跨尺度孔构成)呈现耐烧结、低热导率、高比强度及95%以上的高温波段反射率特点。使用层级孔微球粉末喷涂的热障涂层由于层级孔特征结构的保留,展现出优异的力学性能和隔热性能,热循环寿命提升2倍以上,热导率下降50%以上,且在服役过程中体现出良好的抗烧结性能。ESP造粒技术为新型热障涂层材料从材料设计到工程应用提供了一种快速的涂层性能调控方法,现已成功应用于稀土锆酸盐、稀土钽酸盐和稀土...  相似文献   

20.
为了提高钛合金的滚动接触疲劳性能,以碳化钨(WC)/钛合金(TC18)混合粉末为原料,利用激光熔覆技术在TC18基材表面制备了耐磨涂层,分析了涂层的显微组织和显微硬度,在室温条件下测试了涂层的接触疲劳性能.结果表明,涂层与基体冶金结合良好,WC颗粒呈不规则块状均匀分布于β-Ti基体中,WC显微硬度在2122~2271H...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号