首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
提出一种调整雷达跟踪通道相移的方法 ,即在雷达天线主面上配置偏馈振子 ,利用偏馈振子做为校准源调整雷达跟踪和 /差通道间的相移 ,并对该方法的可行性、可靠性及稳定性进行了实验研究。  相似文献   

2.
利用宇宙射电源测量地面接收系统品质因数G/T值是大多数地球站普遍采用的测量方法。本文针对中国科学院遥感卫星地面站CBERS接收系统给出系统G/T值测量需要的射电源流量密度和修正系数计算公式以及测量误差分析。最后,根据CBERS系统工厂验收测试遇到的问题,对不同天线仰角间的G/T值换算进行分析。分析表明:不同天线仰角间的G/T值可以换算,ΔG/T等于不同天线仰角下测量的背景冷空噪声功率之差。  相似文献   

3.
星载多频段双极化共馈微波辐射计天线   总被引:4,自引:0,他引:4  
叶云裳 《宇航学报》2004,25(1):52-59
作为“神州四号飞船”留轨段主载荷的多模态微波遥感系统中的微波辐射计天线是我国第一个工作到毫米波段的航天器天线,其工作频段跨越近6个倍频程,采用了多频、双极化共馈源偏置抛物反射面天线系统,首次应用就获成功。本文着重阐述该微波辐射计天线的多频、双极化共馈系统设计和毫米波高精度反射面天线的实现。文中还介绍了空间反射面天线的计算机机电热一体化设计。  相似文献   

4.
高健  马琳 《空中交通管理》2006,(12):27-28,36
民航空管地空通信(ATC ground-to-air communications)主要通过甚高频通信与航空器建立话音联系,而携带话音的空间无线电信号的发射和接收是依靠天馈系统来实现的。因此,天馈系统对于VHF通信有着举足轻重的作用,如果天馈系统的选择不好,或者参数设置不当,都会直接影响到整个VHF通信信号的质量。尤其在是信道多、业务繁忙的大型枢纽机场,天线选择及参数设置是否合适,对VHF通信系统的话音质量、覆盖效果有很大影响。本文将向读者介绍一些有关共用系统天线的基本知识,并结合笔者的工作经历,浅谈天线的安装和日常维护。  相似文献   

5.
针对相控阵雷达扫描波位序列的编排问题,从天线波位的几何关系出发,提出了基于相交电平约束的最优扫描波位序列的编排算法以及最佳波住序列的性能评估指标,并在此基础上,重点分析了数字馈相对天线最优扫描波位序列的性能的影响。分析计算表明,在目前移相器位数很难做高的条件下,数字馈相将使最优扫描波位序列的性能严重恶化,在实际设计中必须对扫描波位序列进行优化设计。  相似文献   

6.
针对宽带多功能阵列一致性校正中的瓶颈问题,设计了一种串馈与并馈相结合的模块化同步校正方案,适应宽带阵列通道数多、布阵规模大的特点,兼具经济性与灵活性,既能够有效控制馈线网络规模,又便于天线阵列系统的模块化和标准化制造。  相似文献   

7.
天线雷达散射截面的分析与实验   总被引:2,自引:0,他引:2  
冯林  阮颖铮 《宇航学报》1996,17(3):96-99
本文利用天线散射的基本原理,以波导激励振子抛物面天线为例,计算并分析了天线的结构项散射雷达截面RCSs和模式项散射雷达截面RCSe,给出了此天线雷达截面的预估值。实验结果表明,理论预估值与实测值吻合较好,并且证明天线的模项RCSe大于结构项RCSs,天线总的雷达截面主要受天线模式散射的影响,减小模式项RCSe将有效地降低天线的雷达截面。本文结果为探索以克服天线模式散射为主的天线RCS减缩技术提供了理论依据  相似文献   

8.
孔尚满  单静  陈建友  赵帆 《遥测遥控》2024,45(1):100-105
Ka频段双通道遥测设备的和、差通道存在相位差,并且随环境变化而变化,需要在基带终端通过校相才能实现相位差的校正,最终完成对目标的自主跟踪。在靶场中,以往都是通过架设标校杆进行基带校相,这种方法可以实现相位标校的目的,但是随着遥测设备作战领域已经向深海、高原等区域拓展,受到这些特殊位置环境等对架设标校杆的种种限制。本文重点研究了在高原环境下,不架设标杆校,通过偏馈天线发射信号,实现和、差通道相位零值标定的目的。本文给出了基于偏馈天线的无杆标校原理和方法,并通过实验验证了本文方法的有效性。  相似文献   

9.
针对偏馈形式的移动波束天线,分析了波束指向和双轴转角的换算关系,二次开发了反射面天线仿真计算软件GRASP8SE,最后对天线在波束扫描状态下的电性能进行了仿真计算,并和实测结果做了对比。  相似文献   

10.
简要地阐述雷达寻的导引头天线的功能与发展、导引头天线雷达截面积(RCS)问题提出的原因以及隐身的措施。介绍了某些形式导引头天线RCS的测量和对测试数据的统计方法,并给出RCS的测量结果。最后提出从RCS考虑对雷达寻的导引头天线外形选择的初步看法。  相似文献   

11.
介绍两种新型的基于 GPS频段的同频双极化双路输出天线 ,用于接收 GPS卫星信号。它们的共同点是在一个天线上面同时输出两路信号 ,两路信号频率相同 ,极化方式不同。该天线非常适用于一些特殊的应用场合  相似文献   

12.
介绍一种五单元十字交叉振子宽频带双工馈源。该馈源跟踪带宽扩至300MHz,馈源照射器在发射与跟踪两个频段内驻波比小于1.6,馈源差波束零深大于30dB,交叉耦合度小于25%。文中就该馈源的照射单元与馈电网络的设计作介绍,同时给出测试结果。  相似文献   

13.
针对高精度跟踪用户目标的需求,设计了一种Ka频段卫星天线多模单脉冲馈源。该馈源由和差网络、多模激励器和辐射喇叭组成,当从和差端口分别以TE10模激励时,多模激励器会激励出所需的11个工作模,由辐射喇叭在空间形成单脉冲和、差波束。对该馈源在和、差状态下的辐射特性进行仿真分析,结果表明,其和差矛盾小于2.5dB,差零深小于-40dB,同时馈源在方位面和俯仰面的辐射方向图具有良好的对称性。  相似文献   

14.
本文概要的介绍了一种新型器件——非对称式带状线模式馈电网络的基本原理,主要技术指标及其相位关系等。该器件体积小、重量轻、结构紧凑、性能稳定、用于按模式馈电的场合既方便又可靠。  相似文献   

15.
在实际应用中,有时需要全向天线在水平面以上覆盖较广的空域,针对这一需求,文章提出了两种工作在L频段的波束上翘的全向天线。其中一种为使用同轴转平行双线结构进行馈电的串联印刷偶极子天线,且加入反射板保证波束上翘,实测结果表明该天线在工作频段内,电压驻波比(voltage stanting wave ratio,VSWR)小于1.5,水平面增益大于2dBi,俯仰角0°~70°(定义水平方向为0°)增益大于-7dBi,不圆度小于2dB。另一种为双锥天线,使用上下锥体不对称结构保证波束上翘,同时引入固定套环保证天线的稳定性。实测结果表明该天线在工作频段内,VSWR小于2,俯仰角0°~20°增益大于1dBi,俯仰角0°~70°增益大于-7dBi,不圆度小于2.5dB。该天线结构稳定,性能优良,可应用于车载通信或其他通信场景中。  相似文献   

16.
首次提出了利用焦平面阵列偏焦技术实现毫米波辐射计对目标的多波束二维探测,并介绍了该系统的实际设计及其相关设计。该系统在炸弹自寻的应用中将大大提高目标识别的速度及准确性。  相似文献   

17.
为满足星载高增益天线的应用需求,本文设计了一种带有相控阵馈源的伞状可展开反射面天线。首先介绍了反射面天线可展开机构的原理及设计,由碳纤维天线肋和金属编织网面组成反射面,在高精度可展开机构的动作下实现其收拢和展开,从而大幅减小其收藏包络尺寸。对于直径为1.14 m的可展开反射面天线设计了宽带相控阵馈源,采用金属Vivaldi天线作为相控阵单元,根据极化方式、焦径比和扫描范围选择排列成双极化矩形阵列,使可展开反射面天线在8~16 GHz内实现二维波束扫描,通过电磁仿真进行验证,仿真结果表明,宽带相控阵馈源能够有效地增加可展开反射面天线的视场,反射面天线在8 GHz、12 GHz和16 GHz时扫描到0°的增益分别是38.03 dB、40.65 dB和41.48 dB,扫描到+3°的增益分别是37.68 dB、40.68 dB和41.09 dB。  相似文献   

18.
馈源阵作为星载天线的核心部件,其馈源辐射杯圆度误差显著影响天线的馈电性能,因此,探究馈源单元电性能与圆度误差的关联性极为重要。以某卫星天线馈源阵三维单馈源为例,基于几何绕射理论,将圆度误差引入方向图函数,建立了电磁耦合模型;基于FEKO电磁软件,分析了圆度误差对馈源单体最大增益、波束宽度等主要馈电性能指标的影响规律。研究结果表明,频率越大,增益与波束宽度对圆度误差越敏感。当馈源杯直径存在尺寸误差时,圆度误差导致的电性能变化与尺寸误差之间为振荡关系。文章研究工作可为探求天线制造误差与电性能的关联性提供一定的借鉴与指引。  相似文献   

19.
飞行器载低剖面倒F天线特性分析   总被引:2,自引:0,他引:2  
用于飞行器上的遥测天线通常要求较宽的方向图覆盖范围、简单的外形结构和很低的天线高度。文中用CAD的方法计算并分析了飞行器上几种安装状态的低剖面倒 F形天线的辐射与输入驻波特性 ,提出一种改进型低剖面倒 F天线的设计思路  相似文献   

20.
通常希望一个天线的波瓣图和阻抗能在一个较工的频率范围内保持不变。我们将这一类称为非频变天线。平面等角螺旋天线是一这一类天线的典型例子。本文主要叙述了平面等角螺旋天线的宽频带特性和工作原理,并简要介绍了它的设计方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号