首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earthly microorganisms might have contaminated Mars for millions of years by intellectual activities or natural transfer. Knowledge on the preservation of microorganisms may help our searching for life on outer planets, particularly Mars-contaminated earthly microorganisms at ancient time. Extreme dryness is one of the current Mars characteristics. However, a humid or watery Mars at earlier time was suggested by evidence accumulated in recent decades. It raises the question that whether water helps preservation of the microorganisms or not, particularly those with high possibility of interplanetary transfer like spores and Deinococci. In this study, we examined the effects of desiccation and high humidity on survival and DNA double strand breaks (DSB) of Escherichia coli, Deinococcus radiodurans and spores of Bacillus pumilus at 25, 4 and −70 °C. They exhibited different survival rates and DSB patterns under desiccation and high humidity. Higher survival and less DSB occurred at lower temperature. We suggest that some Mars-contaminated bacteria might have been viably preserved on cold Mars regions for long periods, regardless of water availability. It is more likely to find ancient spores than ancient Deinococci on Mars. In our search for preserved extraterrestrial life, priority should be given to the Mars Polar Regions.  相似文献   

2.
An improvement to the Martian gravity field may be achieved by means of future orbiting spacecraft with small eccentricity and low altitude exemplified through a newly proposed mission design that may be tested in upcoming reconnaissance of Mars. Here, the near equatorial orbital character (with an inclination approximating 10°, eccentricity as 0.01 and semi-major axis as 4000 km) is considered, and its contribution to Martian gravity field solution is analyzed by comparing it with a hypothetical polar circular orbiter. The solution models are evaluated in terms of the following viewpoints: power spectra of gravity field coefficients, correlations of low degree zonal coefficients, precise orbit determination, and error distribution of both Mars free air gravity anomaly and areoid. At the same time, the contributions of the near equatorial orbiters in low degree zonal coefficients time variations are also considered. The present results show that the near equatorial orbiter allows us to improve the accuracy of the Martian gravity field solution, decrease correlation of low degree zonal coefficients, retrieve much better time variable information of low degree zonal coefficients, improve precise orbit determination, and provide more accurate Mars free air gravity anomaly and areoid around the equatorial region.  相似文献   

3.
A major theme in the study of Mars is the search for evidence that water was present in the past or is present today, either at or below the surface. Biological life is connected to water. Hence much research is focused on the detection of water stream channels, which in the past flowed on Mars. In these areas, the petrified remains of the former life on Mars may be found. These channels may be under the regolith layer; however, the radio wave penetrating ability allows for the detection of these channels under the regolith.  相似文献   

4.
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken.  相似文献   

5.
The present report is the first contribution toward a comprehensive fine-structural study of microbial cells from permafrost. Prokaryotes with a variety of cell wall types demonstrate high stability of cell structure after long-term cryopreservation in frozen soils and sediments of the Arctic. The surface capsular layers that were a salient feature of the cells both in situ and on nutrient media may be an adaptation to low temperature. To the extent that permafrost regions on Earth approximate Martian conditions, preservation of cell structure there can serve as the basis for predictions about preservation in Martian permafrost sediments.  相似文献   

6.
火星大气对太阳辐射产生吸收和散射作用,同时还将与火星表面航天器发生对流换热.热设计时难以直接评估对流、辐射和导热三种换热对航天器的影响,从而确定主要的控温途径.在调研火星表面辐射、大气等热环境的基础上,从线性化传热系数和对流辐射比的角度对比分析了辐射、对流和导热对航天器的影响.器表辐射传热系数随光学属性和温度的变化范围...  相似文献   

7.
The primordial Mars may have possessed a thick carbon dioxide atmosphere, with liquid water common on the surface, similar in many ways to the primordial Earth. During this epoch, billions of years ago, the surface of Mars could have been conducive to the origin of life. It is possible that life evolved on Mars to be later eliminated as the atmospheric pressure dropped. Analysis of the surface of Mars for the traces of this early martian biota could provide many insights into the phenomenon of life and its coupling to planetary evolution.  相似文献   

8.
无人火星取样返回任务关键环节分析   总被引:3,自引:3,他引:0       下载免费PDF全文
孟林智  董捷  许映乔  王硕 《深空探测学报》2016,3(2):114-120,128
无人火星取样返回探测在科学成果获取和工程能力提升方面均具有重要意义,与国外已经多次实现的火星着陆巡视任务相比,其任务周期更长,技术风险更高。取样返回飞行方式决定了任务的系统顶层设计。通过对国外研究成果的对比论证,认为应当在火星轨道附近完成交会捕获与样品转移任务,因此需要采用2个不同功能探测器:一个完成火星捕获、样品转移收纳与火地返回;另一个完成火星大气进入、表面上升与样品投送。在此基础上对大气进入、起飞上升、火星轨道交会捕获、样品转移、地球再入等关键环节进行任务分析,论证主要技术难点和初步的可实现途径。  相似文献   

9.
On Moon and Mars, there will be more galactic cosmic rays and higher radiation doses than on earth. Our experimental studies showed that heavy ion radiation can effectively cause mutation and chromosome aberrations and that high-LET heavy-ion induced mutants can be irreversible. Chromosome translocations and deletions are common in cells irradiated by heavy particles, and ionizing radiations are effective in causing hyperploidy. The importance of the genetic changes in the evolution of life is an interesting question. Through evolution, there is an increase of DNA content in cells from lower forms of life to higher organisms. The DNA content, however, reached a plateau in vertebrates. By increasing DNA content, there can be an increase of information in the cell. For a given DNA content, the quality of information can be changed by rearranging the DNA. Because radiation can cause hyperploidy, an increase of DNA content in cells, and can induce DNA rearrangement, it is likely that the evolution of life on Mars will be effected by its radiation environment. A simple analysis shows that the radiation level on Mars may cause a mutation frequency comparable to that of the spontaneous mutation rate on Earth. To the extent that mutation plays a role in adaptation, radiation alone on Mars may thus provide sufficient mutation for the evolution of life.  相似文献   

10.
我国首次火星探测任务将于2020年实施,一步实现"绕""着""巡"的目标。着陆器在火星表面软着陆后,火星车能否沿转移坡道安全转移至火星表面,关系着本次任务的成败。从火星车转移坡道功能要求出发,提出了一种双向抽展式转移坡道方案,解决了大展出比、驱动共用、可靠展开等关键问题,对其展开原理及力学特性进行分析,并开展了模拟火星重力环境的展开试验,为我国火星车转移坡道设计提供参考。  相似文献   

11.
根据火星大气数据库,建立了以高度和经纬度为输入的火星三维解析大气密度模型;在竖直方向上,采用分层指数模型;在水平方向上,将指数模型中的参考密度和参考高度视为经纬度的多项式函数,并通过最小二乘曲面拟合得到了多项式系数。相比传统的指数模型,三维指数模型不仅反映了火星大气密度随高度的变化规律,而且能够体现出大气密度在水平方向上的变化。与大气数据库相比,三维密度模型具有解析形式,计算速度快,仿真过程中只需存储简单的多项式系数即可实现密度的实时计算和调用,适用于地面实时仿真。  相似文献   

12.
Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people. Discharge water from the wetland system will be used as irrigation water for the agricultural crop area, thus ensuring complete recycling and utilization of nutrients. Since the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems may be integrated into early Mars base habitats, since waste heat from the lights may be used for temperature maintenance in the human living environment. "Wastewater gardens (TM)" can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in-situ materials, such as gravel from the Mars surface. Because the technology requires little machinery and no chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements are minimized, and systems can be expected to have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars Base, and wetland water quality efficiency under varying temperature and light regimes.  相似文献   

13.
Environmental conditions on Mars are extremely hostile, and would be destructive to any organisms which might arrive there unprotected to-day. However, it is a biocompatible planet. Its unalterable astrophysical parameters would allow the maintenance of a much thicker, warmer carbon dioxide atmosphere than that which currently exists. Though very cold (averaging about -60 degrees C), highly oxidizing and desiccated, Mars may possess substantial quantities of the materials needed to support life--in particular, water and carbon dioxide. A general scenario for implanting life on Mars would include three main phases: (1) robotic and human exploration to determine whether sufficiently large and accessible volatile inventories are available; (2) planetary engineering designed to warm the planet, release liquid water and produce a thick carbon dioxide atmosphere; and (3) if no indigenous Martian organisms emerge as liquid water becomes available, a program of biological engineering designed to construct and implant pioneering microbial communities able to proliferate in the newly clement, though still anaerobic, Martian environment. The process of establishing an ecosystem, or biosphere, on a lifeless planet is best termed 'ecopoiesis.' This new word, derived from Greek, means 'the making of an abode for life.' It is by no means clear whether ecopoiesis on Mars is scientifically possible or technologically achievable. Thus we urge that it be one of the objectives of space research during the next century to assess the feasibility of ecopoiesis on Mars.  相似文献   

14.
The effect of low temperature on the cell structure of bacteria isolated from permafrost results in structural changes leading to cell differentiation into types of resting cells rangign from spores showing a high endogenous dormancy to typical “dormant” cells of non-spore-forming bacteria showing exogenous dormancy, which is considered to be less highly resistant to extreme conditions in laboratory experiments. In permafrost, dormant cells of non-spore-forming bacteria may demonstrate considerable resistance to long-term freezing and as a result a higher survival level than spore-forming bacteria.  相似文献   

15.
In this paper we present the findings of a COSPAR Mars Special Regions Colloquium held in Rome in 2007. We review and discuss the definition of Mars Special Regions, the physical parameters used to define Mars Special Regions, and physical features on Mars that can be interpreted as Mars Special Regions. We conclude that any region experiencing temperatures > −25 °C for a few hours a year and a water activity > 0.5 can potentially allow the replication of terrestrial microorganisms. Physical features on Mars that can be interpreted as meeting these conditions constitute a Mars Special Region. Based on current knowledge of the martian environment and the conservative nature of planetary protection, the following features constitute Mars Special regions: Gullies and bright streaks associated with them, pasted-on terrain, deep subsurface, dark streaks only on a case-by-case basis, others to be determined. The parameter definition and the associated list of physical features should be re-evaluated on a regular basis.  相似文献   

16.
载人火星探测飞行方案   总被引:1,自引:0,他引:1  
对世界各国载人火星探测的研究情况进行了简要综述,研究了国内外有关载人火星探测飞行方案,提出了载人火星探测方案确定的原则和方案基本思想.给出了一种载人火星探测飞行方案的总体设计,包括飞行轨道方案和载人火星飞船方案等.尤其对轨道设计的重要的两个参数——速度增量和飞行时间进行了详细计算.最后给出了飞行轨道选择、火星飞船从地球到火星和从火星返回地球等的轨道方案和火星飞船各组成部分方案的详细设计结果.  相似文献   

17.
The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant.  相似文献   

18.
基于分层介质模型的HF雷达高度计火星回波仿真研究   总被引:1,自引:0,他引:1  
火星次表层中的水探测是当前深空探测领域中的热门问题之一. 高频(HF)雷达高度计具有较强的穿透能力, 且能同时实现距离和功率测量, 是火星次表层探测的重要手段. 介绍了高频雷达高度计系统的原理和设计, 通过分析高度计电磁脉冲与多层光滑介质之间的相互作用, 得出其回波功 率随时间变化的模型, 并考虑了表面粗糙度对表面回波功率的影响. 选用典型的火星分层介质模型, 对其介电常数特性和高度计回波波形 进行了仿真. 仿真结果表明, 采用高频雷达高度计系统可实现对火星次表 层介电特性垂直廓线的反演, 对火星中水的识别具有重要 作用.   相似文献   

19.
20.
Polarization measurements over the surfaces of the Moon, Mercury, Mars and Saturn's rings, and global data for the Galilean satellites, have been recorded with telescopes in France. A number of asteroids were measured by B. Zellner in USA. The curves of polarization are diagnostic of the micro-texture of the surface, and demonstrate that all the atmosphereless Solar System objects so far observed (except Callisto trailing hemisphere) have their surfaces covered with a regolith of fines, as for the Moon, which is produced by the cumulative effect of meteoroid impacts. For all the silicaceous objects down to a diameter of 700 km, namely Mars, Mercury, the Moon, Callisto (for the apex hemisphere), the mean grain sizes are no larger than 20um. The asteroids have coarser grained regoliths, apparently because of their smaller gravitational escape velocities. The C type asteroid surfaces, assumed to be carbon rich, appear finer grained than the silicaceous S types. The M astereroids assumed to be metallic, are also covered with small fragments, becuase metals loose their ductile properties at low temperature and behave at impact like brittle silicates. The trailing hemisphere of Callisto has a texture almost reminiscent of bare rocks. Orbital considerations to excluse significant impact effects, and a scenario for the past evolution of the satellite are implied.The planet Mars, with wind effects due to a tenuous atmosphere, several intense past volcanic episodes, a high tectonic activity and a permafrost underground has a more diversified surface regolith. A detailed analysis was achieved with photopolarimeters placed on board the soviet Mars Orbiter Spacecraft MARS-5.The Saturn's rings, anisotropic multiple scattering effects are observed and exhibit variations often in few days or weeks. Mutual interactions and gravitational forces are at work to produce organized structures, whereas disorganization forces occur and the competition produced ephemeral situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号