首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
层合板多钉连接载荷分配均匀化方法   总被引:1,自引:0,他引:1  
采用三维有限元方法,对不同钉孔配合下复合材料与金属铝板多钉双搭接的载荷分配进行计算,结果表明,通过在大载荷孔上采取间隙配合及小载荷孔上施加干涉配合的方法可显著影响多钉连接载荷分配,使得各钉载荷趋于均匀.  相似文献   

2.
Collisionless microscopic phenomena such as anomalous resistivity, particle acceleration and heat conduction have been successfully treated by particle simulations. Such simulations are usually restricted to volume elements and time scales that are small compared to global scales or even the space and time steps in macroscopic codes. Despite the recent code advances and increases in computing power, it remains necessary to determine the effect of macroscopic dynamics on small scale phenomena and vice versa. The sensitivity of microscopic simulation results to macroscopic boundary conditions is demonstrated. Macroscopic codes, on the other hand, are examined for their dependence on microscopic details. The consequences for the design and analysis of simulation experiments in space physics are discussed. Combining macroscopic and microscopic aspects in a single simulation, despite the usual disparity of scales, will remain a challenging problem.  相似文献   

3.
超声速燃烧数值模拟中的湍流与化学反应相互作用模型   总被引:1,自引:0,他引:1  
杨越  游加平  孙明波 《航空学报》2015,36(1):261-273
高精度数值模拟有助于理解超声速湍流燃烧中湍流与化学反应的相互作用,可为发动机燃烧室等工程应用设计提供可靠的预测模型。除直接数值模拟外,目前在湍流燃烧应用中使用的大涡模拟和雷诺平均Navier-Stokes模拟均需要借助模型模化发生在湍流小尺度上的流动与化学反应过程对湍流大尺度运动的影响。现有的湍流与化学反应相互作用模型大致可分为:火焰面类模型和概率密度函数类模型,2类模型在不同的应用中各自具有优势和局限性。此外,现有模型大都基于低马赫数燃烧,而超声速燃烧中通常会伴随快速混合、局部熄火和再着火以及激波等复杂过程,这为发展其中的湍流与化学反应相互作用模型提出了更多的挑战。  相似文献   

4.
飞机大迎角气动数据的组成与应用   总被引:2,自引:0,他引:2  
包含非定常气动力在内的由各种方式获得飞机大迎角气动数据,必需经过合理的组合才能形成完整可信的飞机大迎角数据。通过对过失速区飞机运动特点的分析,提出了组成总气 新方法。  相似文献   

5.
目前在风洞中通常采用固定地板和活动地板两种模拟方法开展飞行器地面效应研究,确定地面效应影响量大小。采用固定地板模拟地面时,由于存在地板边界层,不能真实模拟飞机近地飞行状况。采用活动地板模拟地面时,由于活动带运行速度和方向与来流一致,在活动地板表面不存在边界层,可以真实模拟飞机近地飞行状况,提高地面效应试验数据的精准度。介绍了Ф3.2m风洞活动地板系统的研制情况,对活动地板系统的组成、结构形式、主要技术指标等作了简要介绍。YF-16模型试验结果表明:Ф3.2m风洞活动地板试验系统的性能指标达到了设计要求,活动带最大运行速度为60m/s;活动地板和固定地板两种模拟方法获得的地面效应试验结果存在较大差别,差别大小随地板高度和飞机姿态角变化而变化。  相似文献   

6.
对跨声速离心压气机中进口导叶与叶轮的相互影响作用进行了数值模拟研究,研究模型包括三种几何间距模型及对同一间距几何模型使用了两种不同的转静子交界面位置设定。计算结果表明:转静子交界面位置的设定对于多排叶片混合平面法定常计算性能会产生较大影响,5%叶轮轴向长度的变化就可造成1%的效率、2%的压比差别;进口导叶与叶轮的叶排间距大小对离心压气机级气动性能影响很小,但间距较小时会造成流场内较大的压力波动。在近叶排间距时,导叶切割叶轮激波会在导叶压力面侧产生一个高损失区,并沿导叶表面向上游传播;该高损失区由激波压力波造成。此外,激波存在与否,影响到两排叶片流场的相互影响作用强度:激波使叶轮对导叶流场的影响几倍甚至十几倍大于导叶对叶轮流场的影响;激波的影响作用使导叶压力面、吸力面侧压力波动由不同的原因造成。最后,在近叶排间距时,初始进入叶轮通道内且靠近主叶片压力面的尾迹相对靠近吸力面的尾迹片会滞后;完全进入叶轮通道后,近压力面侧尾迹的滞后更显著。  相似文献   

7.
A series of tests to validate an antenna pointing concept for spin-stabilized satellites using a data relay satellite is described. These tests show that proper antenna pointing on an inertially stabilized spacecraft can lead to significant access time through the relay satellite even without active antenna pointing. We summarize the test results, the simulations to model the effects of antenna pattern and space loss, and the expected contact times. We also show how antenna beam width affects the results.  相似文献   

8.
Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of the turbulence, power develops on large scales, which is not present in non-helical small-scale turbulent dynamos. At small length scales, differences occur in connection with the dissipation cutoff scales associated with the respective value of the magnetic Prandtl number. These differences are found to be independent of whether or not there is large-scale dynamo action. However, large-scale dynamos in homogeneous systems are shown to suffer from resistive slow-down even at intermediate length scales. The results from simulations are connected to mean field theory and its applications. Recent work on magnetic helicity fluxes to alleviate large-scale dynamo quenching, shear dynamos, nonlocal effects and magnetic structures from strong density stratification are highlighted. Several insights which arise from analytic considerations of small-scale dynamos are discussed.  相似文献   

9.
Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude, however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058, 2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields spatial structure, its degree of axisymmetry, and its secular variation.  相似文献   

10.
Tobias  S.M.  Weiss  N.O. 《Space Science Reviews》2000,94(1-2):153-160
The 11–year solar activity cycle is magnetic in origin and is responsible for small changes in solar luminosity and the modulation of the solar wind. The terrestrial climate exhibits much internal variability supporting oscillations with many frequencies. The direct effect of changing solar irradiance in driving climatic change is believed to be small, and amplification mechanisms are needed to enhance the role of solar variability. In this paper we demonstrate that resonance may play a crucial role in the dynamics of the climate system, by using the output from a nonlinear solar dynamo model as a weak input to a simplified climate model. The climate is modelled as oscillating about two fixed points (corresponding to a warm and cold state) with the weak chaotically modulated solar forcing on average pushing the solution towards the warm state. When a typical frequency of the input is similar to that of the chaotic climate system then a dramatic increase in the role of the solar forcing is apparent and complicated intermittent behaviour is observed. The nonlinear effects are subtle however, and forcing that on average pushes the solution towards the warm state may lead to increased intervals of oscillation about either state. Owing to the intermittent nature of the timeseries, analysis of the relevant timeseries is shown to be non-trivial.  相似文献   

11.
The effects of stable stratification on aircraft wake vortices are investigated by means of high-resolution two-dimensional simulations. The simulations elucidate that the vortices first decelerate and then accelerate their descent, where they largely conserve their circulation. However, for very stable stratification the tip vortices may rise again to the flight path. The underlying physical mechanisms are revealed by means of a point vortex method and are examined complementarily by balancing the impulse of the wake vortices. It is shown that the prominant effects, deceleration, detrainment and acceleration, are caused by the kinematic interaction of the vorticity generated by baroclinity and the primary vorticity. Furthermore, it is found that the impulse of the ‘whole’ system, including the detrained secondary vorticity, is oscillating with the Brunt-Väisälä frequency which implies that the wingtip vortices themselves do not. Finally, a local shear-number is proposed which takes into account the interaction of primary and secondary vorticity and can describe the instantaneous tendency of wake vortices to accelerate or to decelerate.  相似文献   

12.
《中国航空学报》2022,35(8):236-248
An integrated boost impeller can effectively improve the suction performance of an aircraft hydraulic pump (AHP). It must be designed very carefully; however, few studies thus far have investigated boost impellers. To explore the effect of the boost impeller, this study developed a three-dimensional computational fluid dynamics (CFD) model for an AHP based on the k-ε turbulence model and full cavitation model. The results of verification tests demonstrated that the model is reliable for simulating the delivery characteristics of piston pumps and the boost capacity of the inlet impeller. Steady-state simulations reveal that the boost impeller can remarkably improve the suction performance and mitigate the cavitation damage due to insufficient fluid filling while only consuming a small proportion of the total input power. Transient-state simulations show that the pump with an impeller is more capable of catching up with a sudden increase in flow demand, and it has a lower suction flow ripple and impact. However, such a boost impeller also has some limitations such as magnifying the suction pressure fluctuation and having little effect on mitigating the cavitation caused by the back-flow jet.  相似文献   

13.
Technology review of aeroengine pollutant emissions   总被引:1,自引:0,他引:1  
The Environmental effects issue of air traffic has been gaining increasing public attention. This has led to a considerable world-wide effort to reduce aircraft emissions. The task encompasses a broad variety of scientific and technological problems which are reviewed.The concerns about atmospheric effects have been based largely on laboratory information and experience from weather and climatic simulations. Research carried out over the past few years will improve the understanding of physical and chemical interaction phenomena and will support regulatory activities. Operational changes of airline flight profiles would be of benefit to the reduction of NOx released into the stratosphere but would probably involve a major economic penalty. Emissions reductions through improved engine technology offer an overall potential of 10 % lower fuel burn but will also require a considerable component development effort and investment.Combustion technology appears most promising and industry is concentrating research in this area. Over the past two decades smoke emissions have become negligible and oxides of nitrogen have been reduced by 50 %. Staged combustion and emerging lean premix and rich-burn quick-quench lean-burn technologies are potentially good for another 50 % reduction. Alternative gaseous fuels will become of interest only in the context of a necessity to generally replace crude oil fuels.  相似文献   

14.
Berchem  J.  Fuselier  S.A.  Petrinec  S.  Frey  H.U.  Burch  J.L. 《Space Science Reviews》2003,109(1-4):313-349
The IMAGE mission provides a unique opportunity to evaluate the accuracy of current global models of the solar wind interaction with the Earth's magnetosphere. In particular, images of proton auroras from the Far Ultraviolet Instrument (FUV) onboard the IMAGE spacecraft are well suited to support investigations of the response of the Earth's magnetosphere to interplanetary disturbances. Accordingly, we have modeled two events that occurred on June 8 and July 28, 2000, using plasma and magnetic field parameters measured upstream of the bow shock as input to three-dimensional magnetohydrodynamic (MHD) simulations. This paper begins with a discussion of images of proton auroras from the FUV SI-12 instrument in comparison with the simulation results. The comparison showed a very good agreement between intensifications in the auroral emissions measured by FUV SI-12 and the enhancement of plasma flows into the dayside ionosphere predicted by the global simulations. Subsequently, the IMAGE observations are analyzed in the context of the dayside magnetosphere's topological changes in magnetic field and plasma flows inferred from the simulation results. Finding include that the global dynamics of the auroral proton precipitation patterns observed by IMAGE are consistent with magnetic field reconnection occurring as a continuous process while the IMF changes in direction and the solar wind dynamic pressure varies. The global simulations also indicate that some of the transient patterns observed by IMAGE are consistent with sporadic reconnection processes. Global merging patterns found in the simulations agree with the antiparallel merging model, though locally component merging might broaden the merging region, especially in the region where shocked solar wind discontinuities first reach the magnetopause. Finally, the simulations predict the accretion of plasma near the bow shock in the regions threaded by newly open field lines on which plasma flows into the dayside ionosphere are enhanced. Overall the results of these initial comparisons between global MHD simulation results and IMAGE observations emphasize the interplay between reconnection and dynamic pressure processes at the dayside magnetopause, as well as the intricate connection between the bow shock and the auroral region.  相似文献   

15.
用气膜冷却来防止热斑引起的涡轮叶片过热   总被引:2,自引:0,他引:2       下载免费PDF全文
刘高文  刘松龄 《推进技术》2005,26(6):485-488
为了防止燃烧室出口热斑引起涡轮叶片过热,通过求解二维非定常N-S方程研究了热斑对高压涡轮一级叶片型面压力和温度的非定常影响,并对气膜冷却这种热防护方法进行了尝试。计算结果与公开发表的实验数据基本吻合。结果显示热斑的存在对涡轮级型面压力影响微小,但是会导致动叶型面特别是压力面的温度显著升高并随时间大幅波动。在动叶压力面鳃区引入气膜冷却对型面压力和热斑在涡轮级内的运动影响不大,但可以有效地阻隔高温热斑与压力面的直接接触,并显著降低壁温和减小温度随时问波动的幅度。  相似文献   

16.
傅林  高正红  左英桃 《航空动力学报》2014,29(10):2321-2330
在有限体积框架下,利用MLP(multi-dimensional limiting process)系列重构格式结合HLLHLLC(Harten-Lax-van Leer with contact)近似黎曼求解器,同时引入激波探测函数进一步降低MLP在光滑流动区域的数值耗散,数值模拟了超声速前台阶流动、结冰翼型的非定常流动、高超声速双楔流动和DLR F6-WB跨声速流场,研究了MLP系列格式在可压缩复杂流场中的表现.结果表明:在多维空间中,MLP格式能够在如强斜激波与网格线不重合等复杂流场数值模拟中保持严格的流场单调性;具有和传统MUSCL(monotone upstream-centered schemes for conservation laws)格式类似的计算效率,可以实现5阶,甚至更高阶重构;数值耗散更低,捕获更准确的激波位置,对航空工程数值模拟具有重要意义.  相似文献   

17.
传统滑模观测器(SMO)无速度传感器控制方法在电机的运行速度出现较大变化时,对位置的估计会出现稳态误差。为了消除位置的估计误差,提出了一种带有反动电势修正的SMO无速度传感器控制方法。反电动势的修正律基于永磁同步电机(PMSM)的dq轴电流模型。即使电机运行在速度大幅波动的情况下,也能保持位置估计误差为零,且该方法计算增量较小,易于实现。将所提出的方法在1台1.5 kW的PMSM上进行了仿真和试验,结果验证了位置估计误差能有效地收敛至零。  相似文献   

18.
The Department of Defense (DoD) has funded a dazzling array of “high tech” solutions for many of the problems facing our military forces. Many of these “solutions” have been effective for long range mass destruction but have not been applicable for the close-in hand-to-hand combat that is on our streets. Our goal at the Hughes AET Center has been to convert “high tech” DoD capabilities into cost effective tools to help law enforcement agencies do their jobs better. Surveillance systems presently used by law enforcement officers make extensive use of television, infrared and other Line-of-Sight (LOS) surveillance systems. However, these systems cannot tell what is happening on the other side of a wall, behind bushes, around the corner, in the dark or through a dense fog. A new sensor has been developed that uses technology developed by the DoD for missile warhead fuzing. This small, light weight, low power “Radar” is based upon the fact that radio waves can penetrate nonmetallic materials. This new surveillance capability can help provide information about what is in a wall, ceiling or floor or on the other side of a door or concrete wall. Real field scenarios are used in this paper to show how this radar works and how field users can tell if someone is moving inside a building, even from remote locations  相似文献   

19.
For the purpose of enhancing reliability of aileron of Airbus new-generation A350 XWB,an evaluation of aileron reliability on the basis of maintenance data is presented in this paper.Practical maintenance data contains large number of censoring samples, information uncertainty of which makes it hard to evaluate reliability of aileron actuator.Considering that true lifetime of censoring sample has identical distribution with complete sample, if censoring sample is transformed into complete sample, conversion frequency of censoring sample can be estimated according to frequency of complete sample.On the one hand, standard life table estimation and product limit method are improved on the basis of such conversion frequency, enabling accurate estimation of various censoring samples.On the other hand, by taking such frequency as one of the weight factors and integrating variance of order statistics under standard distribution, weighted least square estimation is formed for accurately estimating various censoring samples.Large amounts of experiments and simulations show that reliabilities of improved life table and improved product limit method are closer to the true value and more conservative; moreover, weighted least square estimate(WLSE), with conversion frequency of censoring sample and variances of order statistics as the weights, can still estimate accurately with high proportion of censored data in samples.Algorithm in this paper has good effect and can accurately estimate the reliability of aileron actuator even with small sample and high censoring rate.This research has certain significance in theory and engineering practice.  相似文献   

20.
《中国航空学报》2016,(6):1664-1672
The movement characteristics and control response of oblique wing aircraft (OWA) are highly coupled between the longitudinal and lateral-directional axes and present obvious nonlinear-ity. Only with the implementation of flight control systems can flying qualities be satisfied. This arti-cle investigates the dynamic modeling of an OWA and analyzes its dynamic characteristics. Furthermore, a flight control law based on model-reference dynamic inversion is designed and ver-ified. Calculations and simulations show that OWA can be trimmed by rolling a bank angle and deflecting the triaxial control surfaces in a coordinated way. The oblique wing greatly affects lon-gitudinal motion. The short-period mode is highly coupled between longitudinal and lateral motion, and the bank angle also occurs in phugoid mode. However, the effects of an oblique wing on lateral mode shape are relatively small. For inherent control characteristics, symmetric deflection of the horizontal tail will generate not only longitudinal motion but also a large rolling rate. Rolling moment and pitching moment caused by aileron deflection will reinforce motion coupling, but rud-der deflection has relatively little effect on longitudinal motion. Closed-loop simulations demon-strate that the flight control law can achieve decoupling control for OWA and guarantee a satisfactory dynamic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号