首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
叙述了基于约瑟夫森效应的交流电压标准的原理、实现方法以及主要不确定度来源,并对波形合成法和脉冲调制法两种实现方法所得到的交流电压标准性能进行比较。波形合成法适用于建立低频计量标准,脉冲调制法适用于高频计量标准。  相似文献   

2.
PTB量子计量三角的组成部分为量子霍尔电阻标准、约瑟夫森电压标准和一个电子计数电容标准(ECCS),而电容的校准能力在量子计量三角的建立过程中起了很重要的作用。为了计算电子个数,采用了一个被称为r电子泵的低温真空电容,其电容值为1pF的十进制整数值。目前整个设备尚未正式运行,某些部件还处于研制阶段。虽然低温电容值在循环后的重复性好于10-6,但是要使量子计量三角型的不确定度达到预期的10-7以内,30 s的电子测量的停留时间还是相对较短。此外,计算电容的校准能力和量子霍尔电阻均有所改进。  相似文献   

3.
由于约瑟夫森电压标准的关键器件——约瑟夫森结需要工作在4.2 K的低温环境中[1],而标准使用的其它仪器则工作在室温环境中,因此需要设计一种沟通低温环境和室温环境的测试探杆,即可以将偏置电流和75 GHz微波传送到约瑟夫森结上,又可以将约瑟夫森结产生的量子电压输出到校准所需的仪器上。本文对可编程约瑟夫森电压标准的低温探杆的绝热设计、精密电测设计和微波传输设计做了介绍。  相似文献   

4.
介绍了量子直流纳伏电压标准的基本原理、标准的组成、实现方案以及试验数据等等。量子直流纳伏电压标准基于交流约瑟夫森效应,利用可编程约瑟夫森直流电压标准的差分原理实现直流纳伏电压的产生。提出了量子直流纳伏电压标准的基本方案及改进设计方案,进一步提升了标准的性能。量子直流纳伏电压标准能够提供高准确度纳伏级量子化直流电压信号,不仅为纳伏级直流电压的精密测量提供了新的手段,还可以解决纳伏级直流电压的量值溯源难题。  相似文献   

5.
    
超流体量子干涉陀螺采用热驱动方式时,陀螺内部流量、压强、温度多参数变化及相互影响,致使加热电阻功率与超流体在弱连接处形成的约瑟夫森频率关系复杂。为了保证陀螺持续稳定的工作在约瑟夫森频率下,必须对陀螺内部约瑟夫森频率的形成机理进行精确建模。针对超流体陀螺热驱动工作方式,首先,从陀螺内腔流体的熵变角度出发,建立了陀螺的温度变化、压强变化和输入-输出模型;然后,仿真分析了在恒定加热电阻功率和线性时变加热电阻功率时超流体陀螺温度和压强随时间的变化特性,对比不同加热电阻功率对陀螺的化学势差和约瑟夫森频率的影响,得出加热电阻功率的工作区间以及约瑟夫森频率的范围;最后,探索分析了约瑟夫森频率对超流体陀螺输出和陀螺精度的影响。  相似文献   

6.
利用约瑟夫森电压标准装置测量直流电阻分压箱   总被引:1,自引:1,他引:0  
提出了一种测量直流电阻分压箱比例的方法,利用可程控约瑟夫森电压标准装置(JVS)直接测量两个电压,计算其比例,具有测量周期短、准确度高、可靠性好的特点。还介绍了JVS和直流电阻分压箱的结构原理,以及测量分压比的技术。JVS能够短时间内连续多次测量10 V和1 V电压信号,几乎"同时"测量,通过合理设计测试方法和步骤,消除了以往测量方法中引线和其他测试设备以及电阻温度漂移的干扰,能够更加准确地测量出分压箱的分压比和线性度等指标,当测量分压箱比率为10∶1和100∶1时,测量的不确定度可分别达到1×10-7和3×10-7。  相似文献   

7.
主要介绍了采用G-M制冷机作为冷源,可以随时启停的用于约瑟夫森电压标准的低温系统,介绍了系统组成工作原理及技术难点的解决方法并给出了测量结果。结果表明该低温连系统的研制成功并启用,有效的降低了约瑟夫森阵列电压标准的运行费用,提高了经济效益。由于采用了自动化控制技术,实现了运行系统的全自动化运行模式,简化了操作步骤,提高了工作效率。  相似文献   

8.
量子点是一种新型半导体纳米晶体,作为一种新兴的光电活性材料,可以实现光电转化,具有亮度高、斯托克位移大、吸收光谱宽、摩尔消光系数高、量子产率高、光稳定性好、荧光寿命长等特点。同时,最初量子点概念的提出和成功制备也对量子限域效应的认知提供了一定的帮助。量子点的尺寸在纳米量级范围内,尺寸限域产生了量子限域效应、宏观量子隧道效应、尺寸效应和表面效应,使其具有了独特的性能。随着对量子点的不断深入研究,其在非线形光学、磁介质、催化、医药、功能材料、生命科学和信息技术等领域的应用逐渐开拓,其在量子密钥分发、量子计量学和量子信息处理等应用领域的研究工作也逐渐提上日程。  相似文献   

9.
介绍了电学计量在直流电压、直流电阻量子化溯源的新进展,在交流电压、交流电阻量子化溯源的新突破,以及电学量子三角形闭合互证的新方法,并对电学量子计量技术在质量单位定义和普朗克常数测定中发挥的作用进行了描述。  相似文献   

10.
介绍了直流电压国家计量副基准与德国国家物理技术研究院的国家计量基准的比对情况。比对采用北京无线电计量测试研究所提供的两只固态电压标准作为传递标准,以间接比对方式进行,其比对的差值分别为1.018V:2.7×10-8,μc=1.1×10-7;10 V:1.6×10-8,μc=5.1×10-8。  相似文献   

11.
电阻作为重要的元器件在电气电子及其他非电领域得到了广泛应用,对其阻值进行准确溯源和量值传递至关重要。相较于实物电阻计量标准,量子化霍尔电阻标准稳定性和准确性更高。目前我国国家/国防量子化霍尔电阻计量基准是基于砷化镓-铝砷化镓异质材料制成的,其对环境温度和外磁场要求高,普通计量实验室难以复现。石墨烯材料的出现为新型量子化霍尔电阻基准/标准的研制提供了可能。本文简述了石墨烯材料的制备方法及其量子化霍尔效应,介绍了石墨烯量子化霍尔效应的国外研究现状,分析了基于石墨烯材料的量子化霍尔电阻标准在研制过程中存在的问题,旨在为我国新型量子化霍尔电阻标准的研制提供参考。  相似文献   

12.
电阻有频率变差,电阻在交流状态下的溯源是计量领域的难题,以往采用交直流差可计算电阻实现了交流电阻的溯源,但存在稳定性和一致性较差的问题,当前采用交流量子化霍尔效应作为交流电阻标准成为计量领域的研究热点。其中需要解决交流量子化霍尔电阻及其向实物标准电阻传递的准确度问题。本文介绍了采用分裂式屏蔽结构克服交流量子化霍尔电阻频率误差的方法,研制10-8量级高准确度四端对电桥满足交流量子电阻的传递需求,研制完全等电位屏蔽结构的交流电桥校准装置保证四端对电桥的准确度,并介绍了交流量子电阻基准的应用领域。  相似文献   

13.
2018 年,国际计量局将对国际单位制7 个基本量进行重新定义或重述。基于光学方法的真空计量新方法、新概念进一步发展,促进真空计量标准向量子化迈进,对真空基本量复现以及今后真空国际单位制的重新定义(由压力的SI 单位帕斯卡(Pa)向气体密度单位(mol/m3 或分子个数/m3,变化)具有重要意义。与传统计量技术相比,利用光学方法所建立的量子真空计量标准具有不需要自校、溯源链零长度、响应快、准确度高、可在多个地点及不同时间复现等优点,为真正意义上的绝对原级标准。本文介绍了美国国家标准与技术研究院(NIST)、德国联邦物理技术研究院(PTB)及瑞典国家测试和检定研究院(SNTRI)等机构开展的基于折射率、吸收光谱、冷原子3种光学方法的新一代量子真空计量标准研究进展,对原理、关键技术及难度挑战进行了阐述和分析。  相似文献   

14.
计量是国家质量基础的重要组成部分,产品质量的提升离不开科学、精准的计量。工业发达国家极为重视计量测试技术的发展。通过搜集、整理量子效应计量、芯片级计量等国内外大量文献资料,归纳分析了近年来国外先进计量测试技术发展动态与趋势。以量子技术和基本物理常数为基础建立量子计量基标准,将大幅提高测量准确度和稳定性,结合量子效应的微加工技术实现芯片尺度的测量等,微纳尺度计量技术也在科学研究、精密测量、智能制造等领域得到广泛应用。本文可为我国计量技术发展提供借鉴。  相似文献   

15.
针对直流电源输出直流电压中与变换器开关频率相同的高频交流电压分量的测量难题,介绍了一种基于数字示波器的测量方法,重点通过改善被测电源供电、示波器探头选择与连接、研究分析示波器操作设置等方式,解决了测量过程中受低频干扰和噪声影响而难以获得稳定高频交流电压波形或量值的问题,实现了高复现性的高频交流电压小信号测量,并对该方法的测量不确定度进行了分析与评定。  相似文献   

16.
By using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved at a global scale. The Quantum Experiment Science Satellite (QUESS) in China, also called Micius, one of the scientific satellite programs in the Strategic Priority Program on space science, the Chinese Academy of Sciences, was launched on 16 August 2016. There are totally 4 scientific payloads. We give a brief overview of the quantum experiment science satellite project and present most recent science results. The main scientific goal of the quantum experiment science satellite was achieved in 2017. Here, we introduce the latest achievements in satellite-based quantum communication and large-scale tests of quantum foundations obtained by Micius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号