首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨鹤森  赵光银  梁华  王博 《航空学报》2020,41(8):23605-023605
深入认识翼型动态失速,结合有效流动控制手段,对解决直升机、风力机桨叶等动态失速引起的高阻力、大低头力矩等气动问题具有重要意义。本文首先介绍了翼型动态失速的流场特点和危害,进而分析了缩减频率、雷诺数、马赫数以及翼型型面等参数对动态失速的影响,并在此基础上总结了常见的动态失速流动控制方法及其研究进展。等离子体气动激励易于产生快速、可控的宽频带气动激励,在动态失速控制领域具有潜力,本文着重介绍了等离子体气动激励动态失速控制的概念和流动控制原理,总结了近来年等离子体激励在翼型动态失速控制上的进展。  相似文献   

2.
翼型过失速动态实验测控系统   总被引:1,自引:0,他引:1  
介绍西北工业大学翼型研究中心用于型过失速动态特性研究的实验装置和测控系统的设计,系统性能和结构、数据采集、数据处理方法和实验结果。也对动态实验中测量、控制与精度等问题展开讨论。  相似文献   

3.
直升机动态失速研究   总被引:2,自引:0,他引:2  
本文简要介绍了旋翼和翼型的动态失速特性、动态失速主动和被动控制、旋翼综合法预测使用的一些动态失速模拟方法.UH-60A直升机飞行试验11029飞行是一个典型的旋翼动态失速实例,表演出旋翼后行桨叶上出现高攻角引起的动态失速,而前行桨叶上则出现因为激波诱导前缘分离引起的动态失速.翼型的动态失速特性方面介绍了典型的动态失速迟滞回线(攻角正弦变化和锯齿变化)、缩减频率和雷诺数对翼型动态失速特性的影响等.动态失速主动控制介绍可动前缘翼型的情况,被动控制则是使用前缘涡发生器的情况.  相似文献   

4.
翼型动态失速的数值研究   总被引:10,自引:2,他引:10  
用不可压缩流动的求解算法,结合WilcoxDC提出的k-ω模式和k-ωSST湍流模式,对翼型的动态失速进行了数值模拟。通过对典型的振荡翼型轻失速和深失速算例的计算结果分析可以看出:(1)绕动态失速翼型的流场结构十分复杂,轻失速和深失速在流动特性上有很大区别。计算结果显示:轻失速主要是由于后缘分离引起,分离涡的影响范围主要是在后缘附近。而深失速则首先形成很大的前缘分离涡,该分离涡在翼型表面上运动,并诱发出二次分离涡,引起翼型升、阻力系数的显著变化。(2)对于动态失速的翼型绕流,k-ωSST湍流模式是较为有效的,计算出的气动力系数迟带曲线变化趋势与实验结果符合得比较好。  相似文献   

5.
旋翼翼型的动态失速现象限制了直升机的最大飞行速度和机动性,并且其产生机理复杂、抑制困难,是直升机空气动力学领域持续关注的重点与难点问题.本文首先介绍了试验、半经验模型和计算流体力学(CFD)等旋翼翼型动态失速研究方法的发展,分析了不同方法的优缺点和适用范围.其次,梳理了旋翼翼型动态失速机理及气动外形、迎角及来流等参数影响机制的研究进展.综合对比发现,变来流-变迎角耦合状态的动态失速更符合旋翼桨叶剖面的流动特征,是未来旋翼翼型动态失速研究的重要方向之一.然后,阐述了旋翼翼型设计方法和设计理念的发展历程,分析了主流翼型定常设计与少数非定常设计理念的优缺点.分析结果表明,非定常设计可以获得既能缓解动态失速又能显著提高静态气动特性的翼型,综合考虑旋翼桨叶剖面运动与来流特征的非定常设计是当前旋翼翼型设计的一个新方向.最后,对旋翼翼型设计的未来发展方向进行了讨论,提出了旋翼翼型设计与旋翼桨叶一体化设计的多层级、多阶段发展设想.  相似文献   

6.
通过对仿真几何模型的数值模拟,有针对性的消除了跨音速区的再压激波.改进了应用在非定常跨音速流动中的翼型,并介绍了一套设计直升机旋翼叶片可变形翼型的基本步骤,而且结合系统优化方法,还设计出了一种无激波翼型。同时还考虑了两种关于变形的分析模型,并应用二维、时间精确、隐式Navier-Stokes程序检验了这两种模型控制动态失速的能力。结果显示,对于直升机,受控变形翼型的发展潜力很大。应用这一翼型,能够大幅度的抑制大攻角时翼型的动态失速与小攻角、高马赫数时再压激波的强度,其结果将会帮助拓展直升机旋翼翼型的设计理念,使其能够进一步控制翼型的动态失速。  相似文献   

7.
针对直升机前飞时旋翼在变来流下出现动态失速的问题,发展了基于协同射流的翼型动态失速控制方法。选取NACA0012翼型为研究对象,基于转捩SST湍流模型求解非定常雷诺平均Navier-Stokes方程,开展不同参数下协同射流控制翼型动态失速的数值模拟。研究结果表明,协同射流能够有效抑制变来流条件下的翼型动态失速。在变来流下,射流流道对翼型原始气动特性产生不利影响,功率系数的增长速度快于射流动量系数的增加,协同射流存在具有较好控制效果的最佳工作区间。协同射流通过与主流掺混来加速涡系演化,以抑制动态失速,通过增强弦向气流的动能以克服逆压梯度,从而抑制流动分离和促进流动再附着。在马赫数0.283、减缩频率0.151、前进比0.25的条件下,协同射流使翼型升力提高、阻力下降、负俯仰力矩峰降低、流动再附着提前,翼型气动特性得到明显改善。  相似文献   

8.
本文给出受迫谐振翼型的动失速工程估算方法。本方法基于风洞试验,综合分析翼型动、稳态特性之间的差别与动、稳态条件之间的关系,建立一套估算动、稳态特性之间差别的经验公式,修正稳态特性,得到相应的动态特性,用本方法计算了三种翼型不同动态条件(包括深失速和后掠)的动失速特,并与测量和文献结果进行了比较,结果符合得相当好。  相似文献   

9.
Gurney襟翼改善翼型动态失速特性研究   总被引:2,自引:0,他引:2  
采用CFD数值方法,研究了NACA0012翼型、加装传统Gurney襟翼及改进不对称Gurney襟翼后翼型的动态失速特性。给出了传统襟翼对翼型动态失速特性的影响,并带来较大动态低头力矩的不足,基于传统襟翼的不足,提出了改进的不对称Gurney襟翼方案。研究表明,不对称Gurney襟翼可较好改善翼型的动态失速特性,在增加动态升力的同时,俯仰低头力矩明显减小,可能是直升机旋翼的较理想翼型。  相似文献   

10.
为了拓展Leishman-Beddoes(L-B)动态失速模型的应用范围,以适应特定翼型的动态失速分析,在详细分析L-B动态失速模型特点的基础上,提出一种模型参数的识别方法。以SC-1095翼型为例,采用其静态升阻特性数据,对L-B动态失速模型中的参数进行了识别,并据此对该翼型的动态失速升阻特性进行了数值计算,计算结果与试验值吻合良好。  相似文献   

11.
旋翼翼型非定常动态失速响应的计算   总被引:3,自引:0,他引:3  
基于旋翼非定常翼型气动模型,给出了计算分离流和深度失速状态下的翼型非定常升力、俯仰力矩的数值计算方法。该方法采用半经验指数响应公式,利用数值离散方法来求解翼型的非定常法向力和俯仰力矩。分别计算了NACA0012和SC-1095翼型上的非定常气动载荷,并与可得到的试验结果进行了对比,验证了方法的有效性。文中还讨论了缩减频率和马赫数对动态失速响应的影响;然后,这个模型被改进以适用于后掠流下的翼型动态失速响应计算,分析了后掠角对翼型动态失速响应的影响。最后,得出了一些结论。  相似文献   

12.
基于联合射流的翼型动态失速流动控制研究   总被引:1,自引:1,他引:1       下载免费PDF全文
动态失速控制对于提高翼型气动特性具有重要意义。采用联合射流方法对翼型俯仰动态失速控制进行数值模拟,完成两方面的研究:一是射流关闭时射流通道对动态失速特性的影响,二是射流开启时不同射流动量系数对动态失速控制的影响和分析。结果表明:射流关闭时,射流通道的存在对翼型上仰过程中附着流阶段的气动特性产生不利影响,使得升力系数明显下降,但是对翼型下俯过程中失速分离流阶段的气动特性影响不明显;射流开启后,动态失速特性得到极大改善,迟滞环面积显著减小,升力增加,阻力减小,且阻力和力矩的峰值显著减小,原基准翼型力矩曲线的负阻尼区域消失。  相似文献   

13.
基于充气前缘技术的旋翼翼型动态失速抑制   总被引:1,自引:2,他引:1  
动态失速的发生会在直升机旋翼桨叶和桨毂上产生高的交变扭转振动载荷,并限制直升机高速重载状态下的使用包线。本文利用计算流体力学(CFD)方法对基于充气前缘(ILE)技术的SC1095旋翼翼型动态失速抑制进行研究,分析了ILE抑制动态失速的控制机理,获得了ILE结构布置和充放气方式对动态失速的影响规律。研究表明:ILE可以有效抑制动态失速的发生;ILE最大膨胀程度越大,其抑制动态失速的效果越好,但膨胀程度过大后抑制效果开始减弱;ILE在翼型上仰至最大迎角时恰好达到最大膨胀状态,其对动态失速的抑制效果最好;ILE保持最大膨胀状态的时间长短对抑制效果影响不大;在翼型上仰至不同迎角时开始对ILE充气会对动态失速抑制有较大影响;ILE整流段与翼型连接位置对动态失速抑制有很大影响,整流段越长,抑制效果越好。  相似文献   

14.
翼型前缘变形对动态失速效应影响的数值计算   总被引:1,自引:1,他引:0  
卢天宇  吴小胜 《航空学报》2014,35(4):986-994
翼型或机翼的动态失速效应所引起的低头力矩和正气动阻尼限制了飞行器气动性能的提高,甚至可能诱导发生不稳定运动。应用于小尺寸机翼的前缘动态变形(DDLE)技术,通过实时改变前缘形状,能够改善翼型前缘区域的速度梯度,进而抑制动态失速效应。采用转捩剪切应力输运(SST)黏性模型结合分区混合动态网格技术,研究了这种前缘变形对机翼俯仰运动所引起的非定常流动的影响,得到通过小幅度前缘变形抑制和延迟动态失速的方法,从而提高翼型的气动性能。翼型NAC A0012的数值模拟结果与动态失速风洞试验结果比较表明:所使用的数值计算方法能够较为准确地模拟翼型在动态失速过程中升力系数与俯仰力矩系数的变化情况,可用于研究前缘变形对翼型俯仰运动所引起的非定常流动的影响。前缘动态变形翼型俯仰运动过程的非定常流场的数值模拟表明:在大迎角下不同幅度的前缘下垂运动能够抑制流动分离的发生,从而抑制动态失速,但在大迎角下小幅度高频率的前缘下垂变形能更高效地抑制动态失速;前缘变形幅度以及变形沿中弧线的分布对升力系数和俯仰力矩系数的影响并不明显。  相似文献   

15.
赵克良  司江涛 《飞机工程》2002,(2):20-23,44
介绍了翼型失速形态的种类,对翼型失速形态的机理作了一定的分析,并通过分析NACA64A212,NACA63-012,NACA4412和一先进超临界翼型失速形态与雷诺数的关系,对其超临界翼型的失速形态提出了看法。  相似文献   

16.
采用建立的高精度计算流体动力学(CFD)方法,针对旋翼非定常动态失速的三维(3D)效应特性进行研究。以Helishape 7AD旋翼为基准,开展三维效应对旋翼非定常气动特性的影响分析。研究了来流马赫数对旋翼翼型动态失速特性影响。在此基础上,针对三维情形旋翼动态失速非定常涡流动特性及诱导分离特征开展了数值分析,通过与二维情形对比表明:受旋翼旋转、轴向诱导速度等三维效应影响,旋翼桨叶剖面动态失速涡的产生、对流和脱落明显滞后于二维翼型情形,并且涡强度也更弱。越靠近桨叶内段,桨叶剖面非定常动态失速特性与二维旋翼翼型情形的差距越为明显。   相似文献   

17.
弹性振动对翼型失速迎角附近流场的影响   总被引:3,自引:0,他引:3  
叶正寅  谢飞 《航空学报》2006,27(6):1028-1032
通过求解雷诺平均Navier-Stokes方程得到气动力,结合翼型振动方程,计算了翼型不同迎角下的动态过程,分别通过层流和湍流情况的计算,重点研究了弹性振动对翼型失速迎角附近流场的影响,研究结果表明,在中低雷诺数、翼型具有弹性振动的情况下,翼型的失速迎角会比传统定常意义上的失速迎角提前出现,为长期以来数值计算得到的失速迎角与风洞实验、飞行试验结果的不同给出了一种物理解释。  相似文献   

18.
李国强  常智强  张鑫  阳鹏宇  陈立 《航空学报》2018,39(8):122111-122111
针对动态失速引起的翼型气动性能恶化的问题,利用小型化的激励电源和介质阻挡放电等离子体激励器,借助动态压力测量和外触发式粒子图像测速(PIV)等手段开展了翼型动态失速等离子体流动控制试验研究。结果表明,等离子体气动激励能够有效控制翼型动态失速,改善平均气动力,提高翼型气动效率,减小气动力随迎角变化的迟滞区域。等离子体诱导出前缘附近的贴体翼面涡,促进分离流再附;增加了上翼面0.2~0.4弦长区域的吸力,减小了升力系数功率谱密度(PSD)分布的二、三、四阶能量幅值,在研究工况下实现了平均升力系数增加7.1%、失速迎角推迟1.3°和迟滞区域减小4.5%的明显控制效果;4°~9°迎角段,等离子体使得翼型平均阻力系数减小40%。此外,振荡频率增加使翼型绕流的非定常性增强,较高雷诺数下的翼型动态分离涡更加难以被抑制,均需要增加等离子体激励强度才能达到较好的控制效果。  相似文献   

19.
后缘襟翼对直升机旋翼翼型动态失速特性的影响   总被引:2,自引:1,他引:2  
刘洋  向锦武 《航空学报》2013,34(5):1028-1035
 针对带后缘襟翼的智能旋翼直升机典型襟翼参数对翼型动态失速特性的影响进行了研究。建立了带后缘襟翼的桨叶动态失速模型,考虑了襟翼与桨叶之间的缝隙和襟翼在运动过程中相对桨叶的凸起,采用计算流体力学(CFD)方法,研究了不同襟翼转轴位置和襟翼与桨叶的缝隙情况下的翼型动态失速特性,探讨了后缘襟翼激励幅值、时长和起始时刻对升力和俯仰力矩系数的影响。研究结果表明:后缘襟翼能够较好地改善翼型动态失速时的气流环境,并减缓动态失速发生;襟翼激励最优幅值在25°附近,最优激励范围在方位角为240°~360°之间;襟翼转轴后移导致襟翼运动时产生的凸起会使襟翼控制效果减弱;襟翼与桨叶的缝隙会影响翼型动态失速特性,但是缝隙的长度(弦长的2%以内)对襟翼控制效果的影响很小。  相似文献   

20.
针对旋翼动态失速导致的非定常载荷增加和失速颤振问题,开展了基于后缘小翼的翼型动态失速主动控制试验,试验雷诺数Re=7.0×105,减缩频率k=0.097。采用动态压力测试手段,重点分析了后缘小翼不同振荡相位差、幅值、平衡迎角对翼型动态失速的影响规律。结果表明,后缘小翼能以振荡周期T的1/2为时间间隔,周期交替地改变翼型的气动性能,在后缘小翼与翼型振荡相位差为0°的条件下,实现了俯仰力矩峰值降低54.9%的控制效果,同时更大的后缘小翼振荡幅值能实现更好的非定常载荷控制效果,但过大的振荡幅值有可能导致失速颤振。后缘小翼振荡平衡迎角的引入能起到调节升力系数、气动阻尼的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号