首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
基于容积法的某涡扇发动机动态建模方法   总被引:3,自引:3,他引:3  
考虑了容腔的质量和能量的储能效应,提出了基于容积法的涡扇发动机实时数学模型建模方法,建立了容腔压力和温度的微分方程,容腔的压力和温度可以用不迭代的数值法求解.同时,利用C++面向对象编程语言,建立了某涡扇发动机动态模型.用建立的发动机动态模型和商用软件Gasturb 10分别计算了发动机性能,并进行了对比,结果表明:该模型与Gasturb 10的运算结果具有良好的一致性,高压压气机转速、涡轮进口温度及压气机喘振裕度的响应结果最大相对误差小于1%.容积法避免了数值迭代,可以保证模型计算的实时性.   相似文献   

2.
基于非线性系统平衡流形的某型涡扇发动机建模研究   总被引:5,自引:1,他引:5  
基于非线性系统平衡流形式建模理论,直接利用涡扇发动机试车数据,通过辨识计算,建立了各主要状态参数与燃油流量和高压转子转速的状态方程关系式,由此建立了某型涡扇发动机的实时动态仿真模型.并且仿真结果与试验吻合好,且其单步计算耗时较短,从而为该涡扇发动机开展实时性仿真、进一步完善发动机性能分析和改进其控制系统设计奠定了良好的基础.   相似文献   

3.
某小型涡扇发动机全流道准三维数值法   总被引:2,自引:0,他引:2  
采用高阶精度Godunov格式和时间相关法,用多部件模型在小型涡扇发动机的全流道S2流面上求解带黏性力项的非定常Euler方程组,并将整机模拟的结果与试验结果进行了对比,在合理给出损失的情况下,计算结果与试验结果基本吻合.  相似文献   

4.
潘慕绚  陈强龙  周永权  周文祥  黄金泉 《航空学报》2019,40(5):122632-122632
考虑涡扇发动机转子部件的惯性、容腔中质量与能量的堆积效应和高低温部件间的热交换,依据转子动力学、容积动力学及热力学建立涡扇发动机部件级非线性动态数学模型。通过求解质量、动量和能量的一阶微分方程,获得发动机典型截面处的性能参数。该模型能够反映涡扇发动机温度、压力、转速等12个关键参数的动态特性,避免传统转子动力学迭代模型的迭代求解,提高了模型实时性。模型输出与试验数据对比结果表明,其稳态误差小于1.6%,最大动态误差小于5%,单次流路计算平均耗时为0.009 ms。  相似文献   

5.
某型涡扇发动机状态模型修正   总被引:4,自引:2,他引:2       下载免费PDF全文
为了针对每一台发动机建立准确的气路故障诊断模型,采用部件法建立了某型涡扇发动机的基准数学模型,分析了模型失配的原因,确定出需要修正的特性参数,采用小波分析实现对可测参数数据的预处理,通过求解所建的扩展非线性方程组完成了发动机模型的离线修正。经仿真验证该算法有较高精度,且易于工程实现,为建立准确的稳态气路故障诊断方程奠定了基础。  相似文献   

6.
加力式双转子混合排气涡扇发动机全状态数学建模技术   总被引:1,自引:0,他引:1  
根据部件法建立了加力式双转子混合排气涡扇发动机全包线稳态数学模型.基于该模型,利用容积动力学原理,建立了起动数学模型.将该原理扩展到慢车状态以上,建立了包括起动、加减速、开关加力、停车等完整过程的全状态动态数学模型.以此为基础,给出了加力式双转子混合排气涡扇发动机在飞行包线内的高度特性.根据加力式双转子混合排气涡扇发动机原理,设计了简单的起动调节规律、加减速调节规律、加力调节规律及停车调节规律;计算了海平面标准大气条件下的从起动、加减速、开关加力、停车的完整动态过程.理论分析与仿真结果表明:该建模方法能够正确完成加力式双转子混合排气涡扇发动机的全包线的稳态计算和全状态动态计算,准确反映了该发动机在整个飞行包线内的全部工作过程.   相似文献   

7.
杨阳  魏旭星  李密 《推进技术》2022,43(9):29-35
为了研究小型中涵道比分排涡扇发动机装机性能,建立了基于燃气发生器法的性能计算模型。由CFD数值模拟计算喷管特性,由发动机地面台架试验及针对小型中涵道比的特点发展的修正方法获取内外涵喷管进口总压和总温的修正系数曲线,经高空模拟台试验验证,发动机最大状态下的推力计算误差≤0.5%。再基于飞行试验测试数据,计算得到发动机在装机条件下的空气流量与飞行推力,与发动机设计厂家的模型计算结果相比,发动机各状态下推力最大误差≤1.3%,流量最大误差≤2.5%。结果表明:发展的性能模型修正方法适用于小型中等涵道比涡扇发动机的装机性能确定;同时修正中等涵道比分排发动机的内外涵喷管进口压力可提高模型推力计算精度;同时修正小流量分排发动机内外涵喷管进口温度可提高流量计算精度。  相似文献   

8.
某型涡扇发动机部件老化对性能影响的分析与计算   总被引:4,自引:1,他引:3  
详细分析了部件老化对发动机性能影响的机理.利用所能得到的统计数据, 基于部件匹配技术, 通过将考虑部件老化影响的部件特性嵌入到发动机稳态性能计算模型中, 建立了考虑部件老化的发动机性能计算模型, 采用Newton-Raphson迭代收敛技术求解非线性方程组, 获得考虑部件老化影响的发动机性能.以某型涡扇发动机为例, 定量地计算分析了部件老化对发动机性能的影响, 计算结果和发动机实际试车数据对比具有较好的一致性, 表明本文发展的方法是合理的.   相似文献   

9.
推重比15一级发动机关键技术及分析   总被引:1,自引:0,他引:1       下载免费PDF全文
围绕下一代窄体客机发动机,介绍了目前国外飞机和发动机生产商方案选择的一些思路,叙述了传统涡扇发动机、齿轮传动涡扇发动机和开式转子发动机的最新进展,预测了发展趋势。  相似文献   

10.
针对某型涡扇发动机非线性数学模型 ,利用非线性规划理论中的序列二次规划方法 (SQP方法 ) ,对该型发动机进行了基于约束的最优加速程序设计。用此方法所优化出的控制序列 ,代入该型涡扇发动机模型进行动态仿真计算。结果表明 ,加速时间较为明显 ,加速性有较大提高。  相似文献   

11.
齿轮传动涡轮风扇(GTF)发动机先进技术综述   总被引:4,自引:0,他引:4  
李杰 《航空发动机》2009,35(4):55-58
齿轮传动涡轮风扇(GTF)发动机采用的1套齿轮减速机构,在保证低压涡轮高速旋转的同时,能使风扇以理想的低速旋转,从而降低了发动机的噪声与油耗。概括性地介绍和分析了PW公司GTF发动机的研制背景、设计特点与采用的新技术。  相似文献   

12.
涡扇发动机消喘系统设计与试验研究   总被引:1,自引:0,他引:1  
在某型涡扇发动机气动失稳特征的基础上,建立了航空发动机失速/喘振特征工程数学模型,研制出发动机消喘系统数字仿真平台,完成了消喘系统的方案优化设计,并在地面台架和飞行台试验中得到了验证。其气动失稳工程数学模型、数字仿真优化设计技术和试验验证方法可广泛应用于航空发动机、地面和舰船燃气轮机、以及其它民用叶轮机械气动失稳测控设计领域,同时也为制定航空发动机消喘系统设计规范奠定了坚实的技术基础。  相似文献   

13.
带矢量喷管的涡扇发动机动态过程研究   总被引:1,自引:0,他引:1  
建立带矢量喷管的涡扇发动机动态数学模型。研究了矢量喷管偏转角和偏转角速度对涡扇发动机工作的影响。研究结果表明 ,不同的矢量喷管偏转角速度对发动机涡轮前燃气温度会产生不同温度峰值 ,而且温度峰值随矢量偏转角速度增大而增大。而在一定的不同矢量角作用下 ,发动机的阶跃响应过程调节参数无明显变化   相似文献   

14.
建立了带推力矢量的涡扇发动机数学模型。结合某型涡扇发动机研究了矢量喷管偏转对发动机工作和性能的影响,研究结果表明,矢量喷管偏转时,在一定条件下,发动机低压转子共同工作线向喘振边界移动,而高压转子共同工作线不发生变化,发动机总推力是增大的。但当将矢量喷管偏转与喉部面积放大相结合,可使发动机保持原工作状态不变,而发动机总推力却随着几何矢量角的增大而减小。   相似文献   

15.
提高民用大涵道比涡扇发动机的经济性以及发动机市场竞争性是当前的研究热点。对双轴直驱(ATF)、齿轮传动(GTF)和间冷回热(IAR)三个构型进行循环参数对比分析,确定不同构型发动机的技术优势。结果表明:GTF构型方案与ATF方案相比的巡航非安装耗油率降低2.5%;IRA构型方案巡航非安装耗油率与ATF构型相比降低了11.97%,与GTF构型相比降低了9.7%;相比于ATF和GTF构型,IRA构型的高压压气机和高压涡轮级数均有所减少,有效缩短了核心机长度,也降低了高压压气机的设计难度。  相似文献   

16.
赵勇  李本威  宋汉强  孙涛 《航空动力学报》2016,31(12):3026-3033
考虑到目前暂无法实现机载条件下高压涡轮前温度直接、可靠的测量,提出一种用于涡扇发动机高压涡轮前温度估计的方法.基于涡扇发动机的能量守恒原理,建立高压涡轮前温度与气路参数的热力学关系,进而推导出高压涡轮前温度的6个估计模型.将各温度模型中不易测量的参数以整体的形式作为温度模型系数,并利用某涡扇发动机性能仿真模型建立温度模型系数与可测状态参数的多项式关系,最终确立高压涡轮前温度的组合估计模型.验证结果表明:组合估计方法在发动机健康及性能衰退状态下都具有较高的精度,其性能最好模型的方均根误差不超过1%.与已有线性拟合、神经网络等方法的对比也表明组合估计方法不论在精度还是性能稳定性方面都具有明显优势.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号