首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
陆凤霞  王孟  王春雷  李玉哲  朱如鹏 《航空学报》2020,41(11):123659-123659
为探究某型直升机中间减速器飞溅润滑油-气两相流分布与参数优化方法,首先基于计算流体力学(CFD)思想建立了中减飞溅润滑数值计算模型;采用多相流(VOF)及动网格等模型计算获得了机匣内部的油液分布与导油管的润滑油流量;分析了浸油深度和输入转速对齿面与轴承(通过导油管的润滑油流量体现)润滑效果的影响规律。然后在直升机中减传动试验台上开展试验,验证仿真的可行性。结果显示:建议的中减浸油深度为17~26 mm、输入转速为4 000~6 000 r/min;试验测得4个导油管的润滑油流量趋势与CFD仿真计算结果一致,且有一个导油管收集不到润滑油,说明该导油管的结构不合理。  相似文献   

2.
基于CFD的某减速器飞溅润滑仿真分析与验证   总被引:1,自引:0,他引:1  
为评估飞溅润滑减速器的储油结构是否合理,基于计算流体动力学方法,建立了包含机匣、螺旋锥齿轮等构件的某减速器飞溅润滑动态仿真模型,开展了气液两相流飞溅润滑流体仿真计算与分析,获得了减速器内部的滑油运动轨迹及分布云图。通过仿真分析可以发现:输入端油兜收集到的滑油量为531 mL,大于输出端收集到的滑油量65 mL;4号油兜收集到的滑油量为0 mL,结构设计存在不合理之处,并进行了飞溅润滑试验验证。仿真分析结果与试验结果的趋势一致,验证了仿真分析方法的准确性,为飞溅润滑减速器储油结构设计提供了指导。  相似文献   

3.
直升机中间减速器(简称“中减”)在飞溅润滑下运转,轴承会因润滑不充分或磨损产生金属屑末,若油池底部的金属屑末信号器无法及时吸附报警则会导致直升机出现故障。为此,基于CFD理论,应用Fluent18.2软件建立中减固-液-气三相流模型,应用RNG k-?湍流模型及动网格技术,基于欧拉-拉格朗日耦合计算方法,采用VOF-DPM耦合模型仿真计算并分析金属屑末的可达性程度,且与试验获得了良好的一致性。结果表明,金属屑末在刚射入机匣内部时以其自身的运动状态为主导,在齿轮将润滑油完全搅动后以齿轮的运动状态为主导,并且运动的随机性与无序性极大,碰到机匣壁面反弹后会发生轨迹突变;所有金属屑末在机匣内均围绕齿轮有离心运动的趋势,且金属屑末的平均速度与距齿轮的距离呈非线性负相关;金属屑末在机匣内的可达性较弱,会在导油管的凹槽与回油孔口沉积,导致直升机无法达到实时报警监测,需对金属屑末易沉积的机匣结构进行改进。  相似文献   

4.
基于轴承腔内气液两相流流动模型,采用VOF方法和MRF模型对高速角接触球轴承简化模型内润滑油的流动特性进行数值计算,获得腔内速度、压力以及润滑油分布情况。分析轴承转速和润滑油进口流量等参数对油液体积分数的影响,以及轴承腔内润滑油的流动轨迹和润滑油进入腔内的影响机理。结果表明:轴承高速转动阶段,润滑油在滚动体和保持架的搅动作用,在腔内局部形成漩涡不利于润滑油的流动;轴承腔内两相流场的环间压力具有周期性特点,喷射润滑油很难穿过环间压力进入腔内;腔内油液体积分数随轴承转速的升高而降低,随供油量的增加而增加,呈非线性关系;喷射角度对环间油液体积分数和滚道油液体积数的影响很大,选择合适的喷射角度能够得到更好的润滑效果。该研究结果对高速轴承润滑设计提供了一定的参考依据。   相似文献   

5.
建立高速人字齿轮副外部空气的流体动力学模型,基于RNG (re-normalization grop)k-ε湍流模型及动网格技术,仿真分析了齿轮周围气流瞬态特性,阐明了齿轮风阻损失机理,研究了齿轮副转速、转向和螺旋角变化对风阻功率的影响规律。结果表明:齿轮副风阻损失主要来源于齿面压差力矩,风阻功率近似与转速的3次方成正比;齿轮副正反转将改变轮齿周围气流方向及齿面最大压差位置,但对风阻功率无影响;螺旋角增大有利于降低风阻功率,螺旋角越大,齿轮副风阻功率降低越显著。单齿风阻力矩曲线呈周期变化,通过啮合区时出现增大-减小至负值-再增大-减小至平稳的波动特性,在非啮合区时趋于平稳;单齿风阻力矩波动值随转速增大而增大,随螺旋角增大而减小。  相似文献   

6.
高速球轴承正常工作时,处于高速旋转状态,此时油相和气相因重力和离心力的作用在轴承环间剧烈运动。为了更准确地分析轴承环间的两相流动,采取VOF模型进行内部流场的模拟,采用多重旋转坐标系描述部件运动。建立球轴承环下润滑计算模型,分析了考虑滚珠自转因素下轴承内部的流动,并在此基础上探究了转速及供油量对轴承工作状态的影响。结果表明,对比整体模型与滚珠自转模型,发现滚珠自转使得轴承内部油体积分数增大,同时也使得滑油穿透间隙达到外环的能力增加;在考虑滚珠自转情况下,转速的不断增大,使得轴承内部的油相体积分数不断减小,在低转速情况下滚珠自转对流体运动影响较为明显,在高转速情况下公转速度对流体运动起到主导作用,滚珠自转对流体运动影响减弱;供油量不断的增大,使得滚珠自转模型内部的油相体积分数也在不断增大,而且滚珠自转运动会加强滑油在轴承内部的分布。  相似文献   

7.
弹流润滑螺旋锥齿轮热摩擦行为分析   总被引:1,自引:1,他引:1  
针对直升机主减速器中的高速重载螺旋锥齿轮,建立了点接触热弹流润滑分析数学模型,包括Reynolds方程、能量方程和膜厚方程等,采用数值方法求解弹流润滑状态下的齿面摩擦因数.模型中考虑了润滑油黏度和密度随压力、温度的变化,并通过轮齿承载接触分析(LTCA)获得齿面真实载荷和卷吸速度、相对滑动速度等运动学变量.基于真实齿面点建立了螺旋锥齿轮单齿模型,考虑滑动摩擦生热和不同表面上的热边界条件,通过有限元稳态热分析和瞬态热分析得到了轮齿本体温度场和接触点瞬时闪温,并与现有文献和算例齿轮台架试验结果进行对比.   相似文献   

8.
为研究螺旋角对航空燃油齿轮泵性能参数的影响规律,通过坐标变换推导了以圆弧-渐开线-圆弧为端面型线的7齿齿轮泵的型线方程,基于动网格技术和RNG k-ε湍流模型对该泵进行三维瞬态流场数值模拟。通过选定不同的重合度系数,计算比较了4种不同螺旋角齿轮泵的流量特性。研究结果表明:螺旋角对该齿轮泵性能有显著影响,随着螺旋角的增大,齿轮泵出口流量脉动系数呈下降趋势;随着螺旋角依次增大,其他三种角度泵的出口平均流量与螺旋角为23.74°的泵相比分别变化:+1.82%,+2.4%,+0.66%,呈先增后减趋势;经小波变换对齿轮径、轴向受力脉动频率进行分析,其脉动频率与齿轮啮合呈周期性相关;随着螺旋角的增大,齿轮相邻腔室间压力分布逐渐趋于均匀。  相似文献   

9.
高速滚动轴承喷油润滑油液穿透机理分析   总被引:2,自引:1,他引:2  
基于空气动力学研究高速滚动轴承环间气流特性,通过建立气相流数学模型和气液两相流数学模型研究润滑油在轴承环间的穿透过程,探究高DN值时润滑油的穿透机理.利用流体体积(VOF)模型对此状态下的空气和润滑油界面进行动态捕捉,以研究润滑油的运动过程、分布特点以及不同参数对环间油液体积分数的影响,得到了高速滚动轴承环间气相流的特性;润滑油在不同转速下进入轴承环间的运动过程;轴承环间气液两相流场的压力、速度特性;轴承环间初始气流场对润滑油进入的影响.结果表明:在轴承小端面靠近内圈附近喷油可以避免湍流对润滑油的影响和干扰,有利于润滑油进入环间;轴承环间存在有利于润滑油贴滚道运动的气流径向作用力,随着转速的增加,该力呈近似线性增加;气流的初始状态影响着轴承环间润滑油的运动状态,润滑油对气流的运动影响较小;较低转速时,轴承环间周向压力变化很小可忽略,较高转速时,其呈现周期性波动,对润滑油进入的影响不可忽视;在较低转速时通过提高喷油体积流量可以有效提高轴承环间油液体积分数,但是高转速时,通过提高喷油体积流量来提高轴承环间的油液体积分数的效果并不明显.   相似文献   

10.
为了揭示微量润滑系统的喷射雾化规律,采用基于激光多普勒效应的三维粒子动态分析仪测量了油滴雾化特性。针对3种可降解绿色润滑油——三羟甲基丙烷三油酸酯、植物油6000和聚乙二醇400,测试得到了不同的油量、空气流量和截距条件下的雾化锥角及油滴大小、速度、数量的分布规律。试验表明,喷雾锥角主要由喷嘴结构决定,油滴数量基本符合正态分布且空气流量和油量对油滴数量影响较大,油滴速度分布曲线呈钟形且射流中心速度最高。该雾化分布特性对实施微量润滑加工具有重要的工程意义。  相似文献   

11.
为改善航空弧齿锥齿轮的承载啮合性能,结合ease-off技术提出一种波动齿面设计方法以降低高重合度弧齿锥齿轮的承载传动误差。鉴于中凹型修形曲线(修形齿面的几何传动误差曲线)可极大地减小高重合度弧齿锥齿轮传动的承载传动误差波动幅值,创建一种与高重合度相适应的波动齿面修形模型;结合ease-off技术建立以降低承载传动误差波动幅值为目标的优化模型;通过优化得到具有良好啮合性能的高重合度弧齿锥齿轮。分析发现:优化后2阶传动误差设计弧齿锥齿轮传动的承载传动误差波动幅值降低了34.152%,而由波动齿面设计方法所得改进修形弧齿锥齿轮的承载传动误差进一步降低了61.492%,有效地改善了高重合度弧齿锥齿轮传动性能,为高性能弧齿锥齿轮齿面设计奠定理论基础。   相似文献   

12.
基于CFD理论,利用Fluent求解软件,借助超级计算机强大的并行运算能力对航空弧齿锥齿轮副风阻功率损失进行仿真计算。采用局部综合法建立弧齿锥齿轮副三维模型,选用RNG k-ε湍流模型,考虑平均流动中的旋流流动情况,与标准k-ε模型相比,RNG通过修正湍流黏度并很好地处理了高应变率以及流线弯曲程度较大的流动。齿轮边界运动通过UDF(user-defined functions)函数驱动,同时采用动网格模拟流场形状由于边界运动而随时间改变问题。最后得出无挡风罩和不同挡风罩配置下的齿轮副风阻功率损失,证实了合理安装挡风罩能够有效降低齿轮风阻损失,并分析多组仿真实验间的减速器内流场压力、速度、湍流动能云图变化,得出了最优化的挡风罩配置,以求最小化风阻功率损失,文中减阻效果最好的挡风罩能降低55.3%的齿轮风阻损失,此时挡风罩间隙为1 mm,为工程实际应用挡风罩的设计提供了参考。  相似文献   

13.
不同轴承壁面沟槽诱导油液穿透机理   总被引:1,自引:1,他引:0  
以高速角接触球轴承为研究对象,在轴承外圈内壁开设沟槽,采用流体动力学对高速轴承壁面沟槽模型进行气液两相流数值模拟。利用VOF(volume of fluid)模型对轴承环间气液两相流界面进行动态捕捉,分析油液在沟槽诱导作用下的运动过程和分布特点,探究阻碍油液进入腔内的影响机理。分别研究了沟槽形状、深度、方向以及喷油参数等因素对高速轴承腔内和滚道润滑油体积分数的影响规律。研究结果表明:在高速轴承喷油润滑阶段,通过对沟槽形状、深度、方向的分析,得到圆弧形沟槽适用于高速轴承,沟槽深度为0.8 mm,沟槽方向为60°有利于油液进入轴承环间,腔内有效润滑油和外滚道油液体积分数最高。通过试验测得壁面有沟槽和无沟槽轴承腔内油液体积分数并与仿真结果对比,发现在轴承高速阶段开设壁面沟槽有利于润滑油进入轴承腔,为高速轴承的润滑设计提供了新的方法。   相似文献   

14.
利用空间点接触齿面啮合理论的矢量法,推导啮合点位置、接触点曲率半径和齿面上接触点的运动速度及其方向。以轮齿加载接触分析(LTCA)方法确定各瞬时单齿承载百分比。计算两齿面间的油膜厚度和膜厚比,作为润滑状态的理论判据。同时以扫描电镜观测分析300小时台架试验后的齿面形貌,结合理论判据,确定典型工况下的弧齿锥齿轮齿面润滑状态。   相似文献   

15.
张宇  严宏志  王志永  曾韬 《航空动力学报》2021,36(12):2586-2595
分析弧齿锥齿轮刀盘的结构特征与切齿运动特点,提出三个参考点的设置方法。以大轮采用展成法,小轮采用螺旋展成法加工的弧齿锥齿轮副为研究对象,提出了全工序法大轮加工参数的简化计算方法。总结螺旋锥齿轮的一般啮合规律,结合参考点设置方法,利用Free-Form型机床的柔性运动控制特征,建立了小轮的切齿控制优化模型,获得一组最优化的加工参数。以此计算方法开发了设计软件,基于国产全数控锥齿轮加工装备,以一对准双曲面齿轮为算例进行了网络化闭环制造,试验结果显示:齿轮副传动误差幅值达13.2″,两齿面接触区均位于齿面中部、呈内对角,验证了方法的正确性,有效解决了全工序法加工弧齿锥齿轮时双面接触特征同步调整困难的行业难题。   相似文献   

16.
预应力作用下弧齿锥齿轮的动频率计算   总被引:4,自引:0,他引:4  
弧齿锥齿轮是航空发动机中的基本元件,常发生共振破坏.运用自主开发的弧齿锥齿轮设计分析系统建立了包含齿轮完整结构的有限元网格模型,并导人ANSYS软件中进行了考虑工作转速和啮合扭矩引起的预应力影响的弧齿锥齿轮动频率计算,结果表明工作转速引起的离心力和啮合扭矩对弧齿锥齿轮的振动频率有一定的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号