首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The problem of modeling solar energetic particle (SEP) events is important to both space weather research and forecasting, and yet it has seen relatively little progress. Most important SEP events are associated with coronal mass ejections (CMEs) that drive coronal and interplanetary shocks. These shocks can continuously produce accelerated particles from the ambient medium to well beyond 1 AU. This paper describes an effort to model real SEP events using a Center for Integrated Space weather Modeling (CISM) MHD solar wind simulation including a cone model of CMEs to initiate the related shocks. In addition to providing observation-inspired shock geometry and characteristics, this MHD simulation describes the time-dependent observer field line connections to the shock source. As a first approximation, we assume a shock jump-parameterized source strength and spectrum, and that scatter-free transport occurs outside of the shock source, thus emphasizing the role the shock evolution plays in determining the modeled SEP event profile. Three halo CME events on May 12, 1997, November 4, 1997 and December 13, 2006 are used to test the modeling approach. While challenges arise in the identification and characterization of the shocks in the MHD model results, this approach illustrates the importance to SEP event modeling of globally simulating the underlying heliospheric event. The results also suggest the potential utility of such a model for forcasting and for interpretation of separated multipoint measurements such as those expected from the STEREO mission.  相似文献   

3.
Peak fluxes are an important property of gradual solar energetic particle (SEP) event time profiles from both astro/heliophysical and applications perspectives. However, the peak flux in an event may occur at the event onset, or at the time of the interplanetary shock arrival (the ESP or energetic storm particles). This makes an important difference in the interpretation of the peak flux, and in any attempts to characterize or model it. This paper describes a study of SEP data sets from ACE, IMP-8 and GOES toward determining the relative properties of these peak fluxes for protons with energies near 1, 10, and 50 MeV. The results suggest that for gradual events with both peaks, the ESP peak often dominates at 1 MeV energies and is dominant about half the time at 10 MeV. Moreover, the prompt peak fluxes can be used to estimate the shock peak (ESP event) up to days ahead, especially in the lower energy range.  相似文献   

4.
We analyze the magnetic structures in the near-tail at Xgsm = −17.5 Re on September 19, 2003 by Cluster. During the course of a substorm event, the earthward propagating plasmoid and flux ropes in the near-tail are observed. The earthward propagating plasmoid is associated with the bipolar Bz and By signatures. The two flux ropes are embedded within the earthward plasma flows, which might be referred to the population as ‘‘BBF-type’’ flux ropes. The first flux rope diameter is about 0.7 Re and duration based upon the Bz signature is ∼20 s, while the second one diameter is about 1.4 Re and duration is ∼30 s. The earthward propagating plasmoid and flux ropes could have influence upon the dipolarization and injection in inner magnetosphere. The Cluster observations of earthward propagating plasmoid and flux ropes can be interpreted as strong evidence for multiple X-lines. Our observations are consistent with that multiple plasmoids or flux ropes are formed repeatedly and ejected tailward in the course of geomagnetically active time.  相似文献   

5.
We present and discuss here the first version of a data base of extreme solar and heliospheric events. The data base contains now 87 extreme events mostly since 1940. An event is classified as extreme if one of the three critical parameters passed a lower limit. The critical parameters were the X-ray flux (parameter R), solar proton flux (parameter S) and geomagnetic disturbance level (parameter G). We find that the five strongest extreme events based on four variables (X-rays SEP, Dst, Ap) are completely separate except for the October 2003 event which is one the five most extreme events according to SEP, Dst and Ap. This underlines the special character of the October 2003 event, making it unique within 35 years. We also find that the events based on R and G are rather separate, indicating that the location of even extreme flares on the solar disk is important for geomagnetic effects. We also find that S = 3 events are not extreme in the same sense as R > 3 and G > 3 events, while S = 5 events are missing so far. This suggests that it might be useful to rescale the classification of SEP fluxes.  相似文献   

6.
The values of the characteristic decay time of particle fluxes in SEP events vary, as a rule, considerably from event to event. We point out, however, that at times sequences of events having similar decay times were observed over long time intervals (up to one month, and even longer in a few cases). The values of the decay times, however, differed among different sequences. The constancy of the decay phase in each consecutive event of these series suggests that the interplanetary medium was in steady state during the event series, and, because of solar rotation, its uniformity within sectors extended to 90–180° in heliolongitude. The very rarely observed long series (up to 2–3 solar rotations) indicate the steadiness and homogeneity of the plasma and the interplanetary magnetic field (IMF) in the entire inner solar system in the course of this time span. It is pointed out that the neutral current sheet of the IMF does not represent a substantial obstacle for energetic charged particles. Both hemispheres are (above and below the current sheet), at least during the series of solar events, invariant with time, uniform and alike from the viewpoint of the propagation of charged particles. The investigation of such sequences of events can also be useful for forecasting characteristics of SEP events.  相似文献   

7.
We have developed an operational code, SOLPENCO, that can be used for space weather prediction schemes of solar energetic particle (SEP) events. SOLPENCO provides proton differential flux and cumulated fluence profiles from the onset of the event up to the arrival of the associated traveling interplanetary shock at the observer’s position (either 1.0 or 0.4 AU). SOLPENCO considers a variety of interplanetary scenarios where the SEP events develop. These scenarios include solar longitudes of the parent solar event ranging from E75 to W90, transit speeds of the associated shock ranging from 400 to 1700 km s−1, proton energies ranging from 0.125 to 64 MeV, and interplanetary conditions for the energetic particle transport characterized by specific mean free paths. We compare the results of SOLPENCO with flux measurements of a set of SEP events observed at 1 AU that fulfill the following four conditions: (1) the association between the interplanetary shock observed at 1 AU and the parent solar event is well established; (2) the heliolongitude of the active region site is within 30° of the Sun–Earth line; (3) the event shows a significant proton flux increase at energies below 96 MeV; (4) the pre-event intensity background is low. The results are discussed in terms of the transit velocity of the shock and the proton energy. We draw conclusions about both the use of SOLPENCO as a prediction tool and the required improvements to make it useful for space weather purposes.  相似文献   

8.
The low background values at nighttime of the mesospheric hydroxyl (OH) radical make it easier to single out the atmospheric response to the external solar forcing in Polar Regions. Because of the short lifetime of HOx, it is possible to follow the trails of Solar Energetic Particle (SEP) events in the terrestrial atmosphere, as shown by Storini and Damiani (2008). The sensitivity of this indicator makes discernible not only extreme particle events with a flux peak of several thousand pfu [1 pfu = 1 particle/(cm2 s sr)] at energies >10 MeV, but also those with lower flux up to about 300 pfu. Using data from the Microwave Limb Sounder (MLS) on board the EOS AURA satellite, we examined the correlation of OH abundance vs. solar proton flux for almost all the identified SEP events spanning from November 2004 to December 2006 (later on no more SEP events occurred during Solar Cycle no. 23). The channels at energies greater than 5 MeV and 10 MeV showed the best correlation values (r ∼ 0.90–0.95) at altitudes around 65–75 km whereas, as expected, the most energetic channels were most highly correlated at lower altitudes. Therefore, it is reasonably possible to estimate the solar proton flux from values of mesospheric OH (and viceversa) and it could be useful in studying periods with gaps in the records of solar particles.  相似文献   

9.
This paper reports the diurnal, seasonal, and long term variability of the E layer critical frequency (foE) and peak height (hmE) derived from Digisonde measurements from 2009 to 2016 at the low-middle latitude European station of Nicosia, Cyprus (geographical coordinates: 35°N, 33°E, geomagnetic lat. 29.38°N, I = 51.7°). Manually scaled monthly median values of foE and hmE are compared with IRI-2012 predictions with a view to assess the predictability of IRI. Results show that in general, IRI slightly overestimates foE values both at low and high solar activity. At low solar activity, overestimations are mostly limited to 0.25?MHz (equivalent electron density, 0.775?×?103?el/m?3) but can go as high as 0.5?MHz (equivalent electron density, 3.1?×?103?el/m?3, during noon) around equinox. In some months, underestimations, though sporadic in nature, up to 0.25?MHz are noted (mostly during sunrise and sunset). At high solar activity, a similar pattern of over-/underestimation is evident. During the entire period of study, over-/under estimations are mostly limited to 0.25?MHz. In very few cases, these exceed 0.25?MHz but are limited to 0.5?MHz. Analysis of hmE reveals that: (1) hmE remains almost constant during ±2 to ±4?h around local noon, (2) hmE values are higher in winter than in spring, summer and autumn, (3) there are two maxima near sunrise and sunset with a noontime minimum in between. During the entire period of study, significant differences between observed hmE and the IRI predictions have been noted. IRI fails to predict hmE and outputs a constant value of 110?km, which is higher than most of the observed values. Over- and under estimations range from 3 to 13?km and from 0 to 3?km respectively.  相似文献   

10.
1 AU轨道上太阳高能粒子(Solar Energetic Particles,SEP)通量是空间天气的重要指标.将SEP两步传播方程的格林函数解进行数值化,模拟了2012年9月28日的SEP事件,首次计算了同一事件中GOES卫星与STEREO双星观测到的SEP通量变化过程.对GOES和STEREO-B观测点,计算所得SEP峰值Imax和峰值到达时间tmax与观测值符合较好;对STEREO-A,由于观测点与太阳活动源区间隔较大及太阳背面未知事件的影响,计算结果与观测存在一定差异.  相似文献   

11.
We link 342 NSO/Kitt Peak synoptic charts during 1978 to 2003 one by one in time order and reconstruct a daily sequence of photospheric magnetic flux (PMF). By using wavelet transform (WT) some typical mid-term periodicities of PMF are identified, such as 1.38-year, 332-, 275- and 158-day periods. We discuss briefly their temporal evolutions and mutual relations in this paper. For a comparison with another solar general index, we also analyze the periodicities of total solar irradiance (TSI) with the same method. We find the wavelet power spectra of such two sequences are very similar. Therefore, we think PMF and TSI may have some common physical origins.  相似文献   

12.
The statistical analysis of the quiet ionosphere F2-layer maximum parameters variability (deviations of NmF2 and hmF2 from the quiet medians, δn and Δh) under solar minimum at day (10–16 LT) and night (22–04 LT) hours based on data of Irkutsk station for 2007–2010 is presented. It is found that the experimental distribution (histogram) of δn can be approximated by a mixture of two normal distributions. The first and second components of the mixture characterize, mainly, relatively weak and strong fluctuations of δn which are presumably associated with the ionospheric effects of the atmospheric gravity waves and of the planetary waves and tides correspondingly. Deviation of the δn histogram from a single normal distribution is most considerable at night hours in winter and equinoxes. For these conditions the weak fluctuations of δn are mainly negative and the strong ones are mainly positive. The Δh histogram is a normal distribution except day hours in winter and equinoxes when a weak deviation of the histogram from the normal distribution occurs.  相似文献   

13.
The solar flare of 23 February 1956 and the resulting geophysical disturbance ranks as one of the most remarkable solar-terrestrial events of the twentieth century. It sparked many papers and has seldom been equalled. Fifty years after the International Geophysical Year, it seems timely to review the observations of the event from today’s perspective, and to draw on the recollections of scientists who were active at the time.  相似文献   

14.
Spatial distribution of the magnetosheath ion flux   总被引:1,自引:0,他引:1  
The magnetosheath plays a crucial role in solar wind-magnetosphere interaction because it is the magnetosheath magnetic field and plasma that interact with the magnetopause and magnetosphere, not the unshocked solar wind. We are presenting ion flux measurement statistics at both the dawn and dusk flanks of the magnetosheath and their comparison with a gasdynamic magnetosheath model. The study is based on three years of INTERBALL-1 measurements supported by simultaneous WIND solar wind and magnetic field observations. Statistical processing has shown (1) the limitations of the gasdynamic model, (2) the conditions favorable for the creation of a plasma depletion layer adjacent to the flank magnetopause, (3) strong dawn-dusk asymmetry of the ion fluxes, and (4) an evidence for the presence of a slow mode front adjacent to the magnetopause.  相似文献   

15.
Magnetic reconnection is one of the most fundamental processes in the magnetosphere. We present here a simple method to determine the essential parameters of reconnection such as reconnected flux and location of the reconnection site out of single spacecraft data via remote sensing. On the basis of a time-dependent reconnection model, the dependence of the reconnected flux on the magnetic field z-component Bz is shown. The integral of Bz over time is proportional to the reconnected flux and depends on the distance between the reconnection site and the actual position where Bz is measured. This distance can be estimated from analysis of magnetic field Bz data. We apply our method to Cluster measurements in the Earth’s magnetotail.  相似文献   

16.
非正态分布误差的统计处理   总被引:2,自引:0,他引:2  
列举常见的非正态分布误差,综述常见非正态误差的概率分布及其特征量,误差分布律的估计及检验,非正态误差的常用统计处理方法及其评定与合成。  相似文献   

17.
18.
SRAM型FPGA单粒子翻转效应加固方法   总被引:2,自引:2,他引:0  
应用重离子加速器和皮秒脉冲激光器开展Virtex-Ⅱ FPGA(Field Programmable Gate Array)单粒子效应加固方法有效性研究.实验结果表明,同时应用三模冗余和动态刷新加固方法能够完全纠正单粒子效应产生的功能错误.实验获得数据加密算法在不同单粒子效应加固方法下功能错误截面,发现少量的存储位翻转就可以导致程序功能错误;程序功能对存储位翻转较敏感.分析Virtex-Ⅱ FPGA不同加固方法在不同卫星轨道的有效性,同时应用动态刷新和三模冗余加固方法,可以完全校正由于存储位翻转造成的功能错误.重离子加速器和脉冲激光器实验结果同时表明,脉冲激光可以模拟重离子加速器研究单粒子效应加固方法有效性.  相似文献   

19.
The shape of the particle flux decline in solar energetic particle (SEP) events is of particular importance in understanding the propagation of energetic particles in the interplanetary medium. Power-law time profiles indicate the dominance of diffusive propagation, whereas exponential-law decline emphasizes convection transport and adiabatic deceleration. Values obtained theoretically for the decay time in the latter case are reasonably close to the fitted slopes in nearly half of all events when the solar wind speed stays nearly constant. Dependencies of characteristic decay time τ and spectral index γ on environmental plasma parameters are considered. Parts of exponential-law declines when solar wind speed: (a) decreases with time, (b) is constant, and (c) increases with time through the interval are analyzed separately. Both average values and dispersions of size distributions of τ for these three groups markedly differ in accordance with theoretical expectations.  相似文献   

20.
舱外航天服空间热流分析计算   总被引:2,自引:0,他引:2  
进行了舱外航天服的被动热防护性设计,了解其空间辐射换热及空间热流.分析了舱外航天服空间热交换的特点及其真空屏蔽绝热层的隔热性能,确定了航天服、地球、飞船及太阳照射方向的4种典型相对位置关系,对各相对位置下航天服的空间辐射外热流进行了分析,并建立了空间热流的计算方法,对航天服表面最大得热与漏热进行了求解.最终计算结果表明:航天服被动热防护性能对空间热流的影响很大.进行被动热防护设计首先应提高隔热性能,并适当减小表面太阳辐射吸收率与表面黑度的比值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号