首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A discussion of various types of x-band airborne radars is presented together with their systematic development through the years to the present time. Starting with simple, low pulse-repetition frequency (PRF) radars for measuring radar-target range, airborne radar development proceeded with more sophisticated high PRF Doppler radars where radar-target range and range rate were measured simultaneously. The use of Doppler (frequency) in signal processing allowed the separation of moving from nonmoving targets (ground), enabling the detection of moving targets in the presence of ground clutter. More recent developments in waveform generation and selection has resulted in the development of medium PRF radars, whereby a greater degree of tactical flexibility in target detection is achieved by combining the desirable features of both low and high PRF radars. Part of the available literature gives an overview, together with a specific example of the design and performance of an airborne medium PRF radar. Here, however, the systematic evolution of these radars is emphasized and the necessary theoretical background is developed for their performance calculations. Modern day airborne radars may be equipped with all three modes of operation, low, medium, and high PRF, allowing the operator to utilize the mode best suited for the tactical encounter. Low PRF and high PRF radars have been described elsewhere and are given here primarily for the sake of completeness and for the necessary background for developing medium PRF radar equations. They are also needed for developing the reasons why medium PRF radars came into being.  相似文献   

2.
Air surveillance radars for this decade will be required to provide reliable target location and trajectory information in height as well as the conventional geographical coordinates. These threedimensional radars will perform this task in spite of adverse environmental conditions such as ground, airborne clutter, and electromagnetic interference. The use of powerful false-alarm control processing allows automatic target detection and remoting of target information without overloading central processing capabilities. The technological evolution of the past decade has allowed sophisticated analysis, antenna/receiver/transmitter design, and signal/data processing techniques to be applied to the next generation of practical production radar systems. These radars will meet more severe performance requirements and will be significantly improved in terms of reliability, maintainability, and life cycle cost considerations. A candidate radar to fulfill the air surveillance role of this decade is the Series 320 radar manufactured by ITT Gilfillan.  相似文献   

3.
季节 《航空学报》1981,2(1):87-94
 本文总结机载雷达中单脉冲技术的研究和应用,着重讨论幅度比较系统的关键技术,给出有关数据。 机载雷达中的单脉冲技术着眼于抗干扰性能和特殊应用。这些应用包括空对地测距、角分辨力改进、地形防撞。本文阐述了这些特殊应用。  相似文献   

4.
Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multiple-input multiple-output (MIMO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incorporating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are expressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance.  相似文献   

5.
Most radars now in use are narrow band systems with frequency bands much less than the carrier frequency. The theory and practice of current radar systems are based of this specific feature. But as is known, it is the frequency band that determines the information content of radar systems, as the volume of information transmitted per time unit is directly proportional to the frequency band. To raise the information capability of a radar system, the widening of its frequency band is needed. The only alternative approach is an increase in information transmission time. The actuality of this problem has determined rapid development in the last years of technologies using ultra wide band (UWB) signals. This paper describes the principles and features of UWB radar.  相似文献   

6.
Two types of battery-powered, compact, ground probing radar (GPR) systems have been developed. The systems have CRT displays mounted on antenna units and are used to locate such underground objects as gas pipes, water pipes, and transmission cables. The performance of the systems and results of field tests are reported. The GPR detected 59 of 64 underground gas pipes; a 200-mm-diameter pipe is clearly detected at a depth of 2.3 m  相似文献   

7.
Radar return data from airborne jet aircraft were collected and analyzed to determine the presence of consistent, dominant radar returns of point scatterers on aircraft simulating landing conditions. These measurements were performed by integrating two separate X-band radars into one system with the ability to simultaneously track and image aircraft. Selected processed data from both radar systems were analyzed and are presented for the airborne jet aircraft  相似文献   

8.
Recent developments in airborne Doppler and ground mapping navigation radars and ground and satellite based radio systems are described. Simultaneous lobing and slope tracking techniques can remove the well-known Doppler sea bias error in fast and slowly moving vehicles. Doppler velocity information can be extracted from coherent forward-looking mapping radars, and high position fixing accuracy can be achieved by synthetic aperture radars. In radio navigation systems, such as Loran, Omega, and satellite systems, direct-ranging and differential techniques greatly reduce the geometric dilution and propagation effects which have plagued conventional radio navigation systems. The advantages gained by mixing of the data from these and other navigation sensors in a digital multisensor system are discussed and approaches for processing these data are suggested.  相似文献   

9.
This paper describes the development of a high-power, coherent radar system at W-band and discusses potential applications of radars with this new capability. Previous radars in this frequency band were limited by available power-amplifier technology to about 500 W of average power; WARLOC radar represents an increase in power, by 20 times, over previous coherent radars at 94 GHz. This performance improvement is possible due to the development of a gyroklystron amplifier specifically for this and future radars in this frequency band. The gyroklystron amplifier tubes deliver 100 kW peak power and 10 kW of average power at a center frequency of approximately 94 GHz. Other novel features of this radar include the use of highly overmoded waveguides and rotary joints for the transmission of power from the final power amplifier (FPA) to the antenna, and a high-power quasi-optical duplexer. The system uses a relatively large 1.8 m diameter (580-wavelength) Cassegrain antenna, which required the development of an antenna with an rms surface accuracy of 0.0025 in, to obtain long-range detection and identification of small objects. Test data show an antenna gain of 62.5 dB, confirming that the needed surface accuracy was achieved. Two mobile shelters house the radar system, permitting relocation to various test sites. WARLOC is presently operational at the Naval Research Laboratory's Chesapeake Bay Detachment facility, Maryland. It is being employed in radar imaging of airborne and surface objects, and in the scientific study of propagation effects and atmospheric physics phenomena.  相似文献   

10.
A review is given of recent activities undertaken in the Institute of Radio Astronomy of the National Academy of Sciences of Ukraine for the development of high-resolution radars. The radars developed include 95- and 36-GHz cloud radars and an airborne, Ku-band SAR radar system. They are capable to perform real-time, high-resolution measurements. The set-up of these instruments, the novel technical solutions, and the signal processing technique introduced are discussed. The results obtained with such instruments during measurement campaigns are presented as well.  相似文献   

11.
Space-time adaptive processing (STAP) has been widely discussed for airborne radar systems to improve the system performance of detecting targets. This is especially true for airborne early warning (AEW) radar, which should find long-range and small radar cross section (RCS) targets such as the stealth aircraft and missiles. However, in existing airborne radar literature, STAP is mainly considered for clutter and jamming rejection in side-looking airborne radar (SLAR) applications. There have been fewer discussions on airborne radar with non-side-ways looking array radar (non-SLAR). The STAP of non-SLAR such as forward looking array radar is also very important and can not be avoided for airborne radar to detect targets in all directions. The STAP of the non-SLAR is studied here. A scheme has been proposed, which is processed by the way of STAP combined with multiple staggered medium pulse repetition frequencies (PRFs). We further study the selection of PRFs in order to make the scheme more available for non-SLAR radar. We analyze two typical non-SLAR cases, i.e., inclined-sideways looking array and forward looking array. We examine this scheme by comparing the performances of three processing systems under the criteria of range-velocity blind zone minimization. Computer simulation results show the multiple-PRFs STAP scheme is feasible for non-SLAR and can be applied to phased-array AEW radar systems  相似文献   

12.
STAP for clutter suppression with sum and difference beams   总被引:1,自引:0,他引:1  
A unique approach for airborne radar clutter rejection is developed and evaluated. This spatial and temporal adaptive approach employs the sum and difference beams of an antenna, which has significant practical advantages because it can be implemented with no/little change to the front-end electronics of airborne systems where sum and difference beams already exist for other reasons. The low sidelobe implementation of many sum and difference beam systems and the low gain of the difference beam in the direction of the target gives this approach the potential in many radars for a more predictable response pattern. The impact of these factors is shown in an airborne clutter rejection demonstration where the performance of this approach is compared with that of the factored approach (FA) using additional spatial channels and that of conventional pulse-Doppler (PD) processing. Reliable detection of an injected target is only achieved by this approach  相似文献   

13.
Thirty eight radar experts contribute to this edition, which includes six completely new chapters on the following topics: ground penetrating radar; remote sensing with radar on satellites; multifunctional radar systems for fighter aircraft (MFAR); digital signal processing for radar; civil marine radar; and propagation. Each chapter contains references, ranging from 10 to 197, with a median of 71. The index runs 18 pages printed in double columns, but is not necessarily complete. Some topics, such as MIMO radar and long range radars to track satellites and ballistic missiles, will have to wait for a 4th edition. This text is the most authoritative, broadest, and deepest single volume on radar. The emphasis is on real world performance and real hardware that has been tested and works successfully in the real world, and the physics relevant to radar systems, as well as radar system engineering cost tradeoffs.  相似文献   

14.
Different types of distributed radar systems and data fusion centers are increasingly used by surface-based air defense systems. Besides the well-established airborne threats, new platforms for air surveillance and attacking devices have appeared and recognized air picture (RAP) production needs to be revised and modified following the events of September 11, 2001. From a military operational and logistic support point of view, it is well-known that not only the long range radars currently in operation, but also the recently procured radars, degrade in performance rapidly and their maintenance costs are high. Using the possibilities offered by emerging technical developments, the problem is to upgrade sensors and existing infrastructure in a way that exploits the information gathered optimally. It is the opinion of this author that one of the most promising approaches to emphasis net-centricity is the use of radar-triangle netcentric structures augmented by netted VHF radars to solve these tasks in a cost-effective manner. This work introduces an analysis of a solution that fully integrates newly required capabilities into the current long range radar net and infrastructure, keeping research and development (R&D) and maintenance at a low cost.  相似文献   

15.
In target tracking systems: using GMTI (ground moving target indicator) radars on airborne platforms, the locations of these platforms are available from GPS-based estimates. However, these estimated locations are subject to errors that are, typically, stationary autocorrelated random processes, i.e., slowly varying biases. In situations where there are no known-location targets to estimate these biases, the next best recourse is to use targets of opportunity at fixed but unknown locations. Such targets can be, e.g., static rotators (ground-based radars with rotating antenna), which yield detections in moving target indicator (MTI) radars. It is shown that these biases can be estimated in such a scenario, i.e., they meet the complete observability condition. Following this, the achievable accuracy for a generic scenario is evaluated. It is shown that accurate georegistration can be obtained even with a small number of measurements  相似文献   

16.
In this paper, we investigate the feasible schemes to generate periodic optical pulses of width between several picoseconds (ps) and tens ps. Gain-switched semiconductor laser diodes are shown to be more suitable for avionics applications than mode-locked laser diodes. In the experiment, we use a low-cost Fabry-Perot laser diode to generate short optical pulse streams. A simple optical injection-locking scheme is then used to reduce the timing jitter and frequency chirp in such laser diodes, which in turn can improve the transmission performance of the generated optical pulses. It is expected that the use of gain-switched semiconductor lasers can meet the requirement of high-speed airborne communication networks or ground supporting systems at airports. Moreover, we discuss the possibility of using the pulsed semiconductor lasers to generate millimetre-wave (mm-wave) signals for future applications to airborne high-resolution, mm-wave radars.  相似文献   

17.
A general procedure for analyzing ground clutter effects in airborne pulse Doppler radars is described. The quantity computed is the expected clutter power at the output of any specified range gate/ Doppler filter processing cell. The procedure has been computerized and is quite general with respect to antenna gain pattern, clutter cross section variation, PRF, pulse and range gate shapes, and the various receiver processing functions. It is applicable only to distributed ground clutter and linear processing, and excludes the dynamic effects of continuous antenna scanning. To exemplify the use of the procedure, two studies conducted for a postulated high PRF radar are described, and the results are presented.  相似文献   

18.
19.
Polish radar research and development since 1953 is reviewed, covering the development and production of surveillance radars, height finders, tracking radars, air traffic control (ATC) radars and systems, and marine and Doppler radars. Some current work, including an L-band ATC radar for enroute control, a weather channel for primary surveillance radar, signal detection in non-Gaussian clutter, adaptive MTI filters and postdetection filtering, and a basic approach to radar polarimetry, is examined.<>  相似文献   

20.
一种基于角度-多普勒补偿的均匀圆形   总被引:2,自引:1,他引:1  
采用均匀圆形相控阵天线的机载雷达杂波分布随距离变化而变化,各距离单元的杂波不再满足独立同分布的条件,造成统计型空时自适应处理(STAP)器性能下降。基于此,本文建立了均匀圆形天线机载雷达模型,对其杂波分布进行了分析,得出了空间角随阵元数非线性变化的特性造成其杂波距离维分布非均匀的结论。研究了一种均匀圆形天线机载雷达杂波抑制方法,该方法先通过修正的角度-多普勒补偿(MADC)预处理消除在杂波谱中心处的非均匀,再利用基于导数更新(DBU)技术进一步减小在其他方位杂波的非均匀程度。仿真结果表明了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号