首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A discussion is devoted to the design of an adaptive flight control system of the armed helicopter using wavelet neural network method. Firstly, the control loop of the attitude angle is designed with a dynamic inversion scheme in a quick loop and a slow loop. respectively. Then, in order to compensate the error caused by dynamic inversion, the adaptive flight control system of the armed helicopter using wavelet neural network method is put forward, so the BP wavelet neural network and the Lyapunov stable wavelet neural network are used to design the helicopter flight control system. Finally, the typical maneuver flight is simulated to demonstrate its validity and effectiveness. Result proves that the wavelet neural network has an engineering practical value and the effect of WNN is good.  相似文献   

2.
A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is proposed which combines the approximation method of neural network with sliding mode control. The decentralized controller consists of an equivalent controller and an adaptive sliding mode controller. The sliding mode controller is a robust controller used to reduce the track error of the control system. The neural networks are used to approximate the unknown nonlinear functions, meanwhile the approximation errors of the neural networks are applied to the weight value updated law to improve performance of the system. Finally, an example demonstrates the availability of the decentralized control method.  相似文献   

3.
4.
We studied carrier landing robust control based on longitudinal decoupling.Firstly,due to the relative strong coupling between the tangential and the normal directions,the height and the velocity channels were decoupled by using the exact linearization method,so that controllers for the two channels could be designed seperately.In the height control,recursive dynamic surface was used to accelerate the convergence of the height control and eliminate″the explosion of complexity″.The radial basis function(RBF)neural network was designed by using the minimum learning parameter method to compensate the uncertainty.A kind of surface with nonsingular fast terminal sliding mode and its reaching law were developed to ensure finite time convergence and to avoid singularity.The controller for the velocity was designed by using super-twisting second-order sliding mode control.The stability of the proposed system was validated by Lyapunov method.The results showed that the Levant′s robust differential observer was improved and used for the observation of the required higher order differential of signals in the controller.The response of aircraft carrier landing under the complex disturbance is simulated and the results verified the approach.  相似文献   

5.
The problem of fault estimation and accommodation of nonlinear systems with disturbances is studied using adaptive observer and neural network techniques.A robust adaptive learning algorithm based on switchingβsmodification is developed to realize the accurate and fast estimation of unknown actuator faults or component faults.Then a fault tolerant controller is designed to restore system performance.Dynamic error convergence and system stability can be guaranteed by Lyapunov stability theory.Finally,simulation results of quadrotor helicopter attitude systems are presented to illustrate the efficiency of the proposed techniques.  相似文献   

6.
Attitude control system is one of the most important subsystems in a spacecraft.As a key actuator,the control moment gyroscope(CMG)mainly determines the performance of attitude control system.Whereas,the control accuracy and output torque smoothness of the CMG depends more on its gimbal servo system.Considering the constraints of size,mass and power consumption for a small satellite,here,a mini-CMG is designed,in which the gimbal servo system is driven by an ultrasonic motor.The good performances of the CMG are obtained by both the ultrasonic motor and the rotary inductosyn.The direct drive of gimbal improves its dynamic performance,with the output bandwidth above 20 Hz.The angular and speed closed-loop control obtains the 0.02°/s gimbal rate,and the output torque resolution better than 2×10~(-3) N·m.The ultrasonic motor provides 1.0N·m self-lock torque during power-off,with 12arc-second position accuracy.  相似文献   

7.
A new control algorithm is presented for digitally controlled dc-dc converters to achieve a fast response under a successive load-change. Under the steady-state condition, the tight voltage regulation is processed by the conventional digital PID compensator. If the load disturbance is significant, the controller switches to an optimal control scheme. With the integration of the capacitor current, the proposed algorithm predicts the optimal switch over time based on the charge balance control, and the minimal voltage derivation and recovery time are thus achieved when the load current has a successive load-change. The method for calculating the optimal switch over time is described, and the implementation of the proposed algorithm with a digital controller is treated in detail. Furthermore, the simulation and experiment results are provided to validate the effectiveness of the approaches.  相似文献   

8.
A control system for correction mechanisms through the whole trajectory is proposed based on the principle of one-dimensional trajectory correction projectile. Digital signal processing (DSP) is utilized as the core controller and gobal positioning system (GPS) is used to measure trajectory parameters to meet the requirements of calculating ballistics and system functions. Firstly, the hardware, mainly including communication module, ballistic calculation module, boosting & detonating module and data storage module, is designed. Secondly, the supporting software is developed based on the communication protocols of GPS and the workflow of control system. Finally, the feasibility and the reliability of the control system are verified through dynamic tests in a car and live firing experiments. The system lays a foundation for the research on trajectory correction projectile for the whole trajectory.  相似文献   

9.
With the increase of complexity of electromagnetic environment and continuous appearance of advanced system radars, signals received by radar reconnaissance receivers become even more intensive and complex. There- fore, traditional radar sorting methods based on neural network algorithms and support vector machine (SVM) cannot process them effectively. Aiming at solving this problem, a novel radar signal sorting method based on the cloud model theory and the geometric covering algorithm is proposed. By applying the geometric covering algo- rithm to divide input signals into different covering domains based on their distribution characteristics, the method can overcome a typical problem that it is easy for traditional sorting algorithms to fall into the local extrema due to the use of complex nonlinear equation to describe input signals. The method uses the cloud model to describe the membership degree between signals to be sorted and their covering domains, thus it avoids the disadvantage that traditional sorting methods based on hard clustering cannot deinterleave the signal samples with overlapped param- eters. Experimental results show that the presented method can effectively sort advanced system radar signals with overlapped parameters in complex electromagnetic environment.  相似文献   

10.
A three degree-of-freedom (DOF) ultrasonic motor (USM) with a cylinder-shaped stator and a spherical rotor is introduced, which uses one first order longitudinal and two second order bending nature vibration modes of the cylinder. Control strategies for the two DOF trajectory following are studied and applied to the prototype USM. Vibration amplitude control is employed for speed regulation. The first trajectory following strategy is a step-by-step interpolation. The second strategy is vector decomposition control. Three pulse width modulation (PWM) methods for the exciting voltage regulation are investigated. These methods are compared and verified by several experiments. The key is to keep the phase differences of the three vibration constants and small exciting voltage distortion while the exciting voltages are changed for simplifing the control process and obtaining good control performance. The vector control method has advantages of small trajectory following error, smooth moving and low noise.  相似文献   

11.
To reduce the collision shock and risk of injury to an infant in an in-car crib(or in a child safety bed)during a car crash,it is necessary to limit the force acting on the crib below a certain allowable value.To realize this objective,we propose a semi-active in-car crib system with the joint application of regular and inverted pendulum mechanisms.The crib is supported by arms similar to a pendulum,and the pendulum system itself is supported by arms similar to an inverted pendulum.In addition,the arm acting as a regular pendulum is joined with the arm acting as an inverted pendulum through a linking mechanism for simplicity,and the friction torque of the joint connecting the base and the latter arm is controlled using a brake mechanism,which enables the proposed in-car crib to gradually increase the deceleration of the crib and maintain it at around the target value.This system not only reduces the impulsive force but also transfers the force to the infant′s back using a spin control system,i.e.,the impulse force is made to act perpendicularly on the crib.The spin control system was developed in our previous work.The present work focuses on the acceleration control system.A semi-active control law with acceleration feedback is introduced using the sliding mode control theory.Especially,a feedback system of the crib acceleration relative to the vehicle is proposed for the high-vibrational environment.Further,a control experiment using scale model is conducted to confirm the effectiveness,and some results are reported.  相似文献   

12.
Chaotic characteristics of traffic flow time series is analyzed to further investigate nonlinear characteristics of air traffic system. Phase space is reconstructed both by time delay which is built through mutual information, and by embedding dimension which is based on false nearest neighbors method. In order to analyze chaotic characteristics of time series, correlation dimensions and the largest Lyapunov exponents are calculated through Grassberger-Procaccia (G-P) algorithm and small-data method. Five-day radar data from the control center in Guangzhou area are analyzed and the results show that saturated correlation dimensions with self-similar structures exist in time series, and the largest Lyapunov exponents are all equal to zero and not sensitive to initial conditions. Air traffic system is affected hy multiple factors, containing inherent randomness, which lead to chaos. Only grasping chaotic characteristics can air traffic be predicted and controlled accurately.  相似文献   

13.
To satisfy the demand on dynamic performance and load characteristics of piezoelectric actuators in aeronautics and astronautics fields,a novel 2Dpiezo-nanopositioning stage utilizing a triangle amplifier mechanism is proposed.The stage is driven by piezoelectric rhombic units in both X and Ydirections,which is composed of four piezoelectric stacks.Theoretical static model develops the relationships among output force,displacement,static stiffness and the structure parameters of the platform.The experimental results of the prototype show that the output performances in X and Ydirections are similar and both of them are within an 8% deviation from the theoretical values.The stroke of the stage reaches 41.6μm and 42.9μm in Xand Ydirections,respectively,and is directly proportional to the amplitude of the input sinusoidal voltage 10 Hz.Moreover,the nano-positioning stage is featured with bidirectional symmetrical output characteristic and millisecond starting characteristic,whose minimum output displacement step is 50 nm.  相似文献   

14.
This paper aims to obtain the thermodynamic characteristics of the air system control device sealing part in different compressor bleed air and ambient temperature. On the basis of considering the main factors affecting the heat exchange process and simplifying the physical model of the air system control device,the thermodynamic model of air system control device is established based on the basic theory of laminar flow heat transfer and heat conduction theory.Then the piston motion characteristics and the thermodynamic characteristics of the air system control device seal are simulated. The simulation results show that the valve actuation dynamic time of piston is about 0.13 s in the actual working conditions,and the temperature effect on the dynamic response of the piston rod is only 5 ms when the inlet air temperature at 300 ℃ and 370 ℃. The maximum temperature of the air system control device sealing part is not more than 290 ℃ under long time working condition of compressor air entraining. The highest temperature of the sealing part can reach up to 340 ℃ when the air flow temperature reaches the limit temperature of 370 ℃,and the longest duration working temperature limit is not more than 14 s. Therefore,the selection of control device sealing material should consider the work characteristic of instantaneous temperature limit.  相似文献   

15.
The critical lengths of an oscillator based on double-walled carbon nanotubes (DWCNTs) are studied by energy minimization and molecular dynamics simulation. Van der Waals (vdW) potential energy in DWCNTs is shown to be changed periodically with the lattice matching of the inner and outer tubes by using atomistic models with energy minimization method. If the coincidence length between the inner and outer tubes is long enough, the restoring force cannot drive the DWCNT to slide over the vdW potential barrier to assure the DWCNT acts as an oscillator. The critical coincidence lengths of the oscillators are predicted by a very simple equation and then con- firmed with energy minimization method for both the zigzag/zigzag system and the armchair/armchair system. The critical length of the armchair/armchair system is much larger than that of the zigzag/zigzag system. The vdW po- tential energy fluctuation of the armchair/armchair system is weaker than that of the zigzag/zigzag system. So it is easier to slide over the barrier for the armchair/armchair system. The critical lengths of zigzag/zigzag DWCNT- based oscillator are found increasing along with temperature, by molecular dynamics simulations.  相似文献   

16.
Bleed air system is one of the most important components of air management system(AMS).It acts as transfer pipes responsible for air supply at high temperature and pressure.The thermal and flow performance of the bleed air system is a key issue for the design of AMS since the characteristics of air source have a great influence on the anti-ice system,the environmental control system and other downstream system in need of high temperature pressurized air.Based on the one-dimensional lumped parameter technology,a computer analysis model of bleed air system is developed in order to analyze the thermal and flow behaviors of the nodal points in the pipeline network.The simulation are performed with a given flight assignment using the analysis model,and the results verify that the system meets the design requirements.  相似文献   

17.
The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed. The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system. The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK, and simulation results of dry runway and wet runway are presented. The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93% on dry runway and 82% on wet runway respectively.  相似文献   

18.
The aim of this work is to analyze and design a control system for vibration reduction in a rotor system using a shear mode magnetorheological fluid (MRF) damper. A dynamic model of the MRF damper-rotor system was built and simulated in Matlab/Simulink to analyze the rotor vibration characteristics and the vibration reduction dfeet of the MRF damper. Based on the numerical simulation analysis, an optimizing control strategy using pat- tern search method was proposed and designed. The control system was constructed on a test rotor bench and ex- periment validations on the effectiveness of the proposed control strategy were conducted. Experimental results show that rotor vibration caused by unbalance can be well controlled whether in resonance region (70~) or in non- resonance region (30 ~). An irregular vibration amplitude jump can be suppressed with the optimization strategy. Furthermore, it is found that the rapidity of transient response and efficiency of optimizing technique depend on the pattern search step. The presented strategies and control system can be extended to multi-span (more than two or three spans) rotor system. It provides a powerful technical support for the extension and application in target and control for shafting vibration.  相似文献   

19.
The energy conversion optimization control strategy is presented for a family of horizontal-axis variablespeed fixed-pitch wind energy conversion systems,working in the partial load region.The system uses a variablespeed wind turbine(VSWT)driving a squirrel-cage induction generator(SCIG)connected to a grid.A new maximum power point tracking(MPPT)approach is proposed based on the extremum seeking control principles under the assumption that the wind turbine model and its parameters are poorly known.The aim is to drive the average position of the operation point close to optimality.Here the wind turbulence is used as search disturbance instead of inducing new sinusoidal search signals.The discrete Fourier transform(DFT)process of some available measures estimates the distance of operation point to optimality.The effectiveness of the proposed MPPT approach is validated under different operation conditions by numerical simulations in MATLAB/SIMULINK.The simulation results prove that the new approach can effectively suppress the vibration of system and enhance the dynamic performance of system.  相似文献   

20.
In coupled mode,the major problem of boom refueling system is undesirable nozzle loads.An automated load alleviation system(ALAS)is needed to alleviate nozzle loads.In order to simulate dynamic of the system and to validate ALAS,dynamic model is developed.Two models are established,which are the static model and the moving model,named after the two relative states between the fixed boom and the extension boom.Kane method is employed as main method considering system′s multi-body characteristics.D′Alembert′s principle is used to calculate nozzle loads.Simulation is conducted to research the effects of position disturbance and velocity disturbance on nozzle loads.Results indicate that position disturbance plays a more significant role in inducing nozzle loads.A fuzzy control law based ALAS is validated using the formulated model.It is concluded that this model can simulate system dynamic and validate ALAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号